Supplementary Information for:

CO oxidation on metal-free nitrogen-doped carbon nanotubes and the related structure-reactivity relationships

Xingbang Hu*, Youting Wu, and Zhibing Zhang

School of Chemistry and Chemical Engineering, and National Engineering Research Center for Organic Pollution Control and Resource, Nanjing University, Nanjing 210093, P. R. China

Index

1. The optimized structures of different states in pathway B, C,

E and F

- 2. The IRC analysis results
- 3. The adsorbing potential energy curve

1. The optimized structures of different states in pathway B, C, E and

F

C_{CO}-O_{CO}

1.139

1.159

1.192

1.185

Table S1. The optimized structures of different states in pathway B and C.

Bond Length	Rea-B	TS1-B	Int-B	TS2-B	Pro-B
in Å					
C _{NCNT} -O _{oxygen}	1.533	1.497	1.453	1.452	1.223
O _{oxygen} -O _{oxygen}	1.316	1.384	1.478	1.484	3.050
C _{CO} -O _{oxygen}	3.067	1.735	1.343	1.399	1.170
C _{CO} -O _{CO}	1.139	1.157	1.193	1.182	1.169
Bond Length	Rea-C	TS1-C	Int-C	TS2-C	Pro-C
in Å	1000 000 000 0000000000000000000000000	1987-33.4 1987-33.4 1987-33.4 1987-33.4 1987-33.4 1987-999		335003-3 9359 333-3 9363 333-3 9363 335-3 9363 335-3 9363 335-3 9363 335-3 9363 335-3 9363 35-3 936 35-3 936 35-3 936 35-3 937 35-3 9375 35-3 93757 35-3 937575755757575757575757575757	
C _{NCNT} -O _{oxygen}	1.533	1.467	1.459	1.459	1.231
O _{oxygen} -O _{oxygen}	1.316	1.397	1.478	1.504	3.093
C _{CO} -O _{oxygen}	3.050	1.743	1.343	1.389	1.170

1.169

Bond Length	Rea-E	TS1-E	Int-E	TS2-E	Pro-E
in Å	۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵	0 0 0 0 0 0 0 0 0 0 0 0 0 0			88
C _{NCNT} -O _{oxygen}	1.220	1.375	1.534	1.609	3.985
C _{CO} -O _{oxygen}	2.953	1.866	1.329	1.311	1.169
C _{CO} -O _{CO}	1.139	1.159	1.183	1.185	1.169
Bond Length	Rea-F	TS1-F	Int-F	TS2-F	Pro-F
in Å	00 100000000 100000000 100000000 1000000				
C _{NCNT} -O _{oxygen}	1.221	1.350	1.478	1.491	3.985
C _{CO} -O _{oxygen}	2.951	1.847	1.339	1.336	1.169
C _{CO} -O _{CO}	1.139	1.161	1.192	1.193	1.169

Table S2. The optimized structures of different states in pathway E and F.

Fig. S1. The IRC analysis result of TS1-A

Fig. S2. The IRC analysis result of TS2-A

Bond Length	To Rea-D	TS1-D	To Int-D
C _{NCNT} -O _{oxygen}	1.285	1.311	1.354
C _{CO} -O _{oxygen}	2.109	1.944	1.751
C _{CO} -O _{CO}	1.149	1.158	1.17 1

Fig. S3. The IRC analysis result of TS1-D

Bond Length	To Int-D	TS2-D	To Pro-D
C _{NCNT} -O _{oxygen}	1.479	1.491	1.568
C _{CO} -O _{oxygen}	1.340	1.336	1.223
C _{CO} -O _{CO}	1.191	1.193	1.193

Fig. S4. The IRC analysis result of TS2-D

3. The adsorbing potential energy curve.

Fig. S5. The adsorbing potential energy curve of NCNT(4,4)-8.0...O.