Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2012

Figure S1. TEM images of $Si_{1-x}C_x$ NWs grown as a function of flow rate ratio of SiH_4 to CH_3SiH_3 gas. (a) As-grown SiNWs with straight sidewall. The gas flow ratio of SiH_4 to CH_3SiH_3 gas in $Si_{1-x}C_x$ NWs is controlled: (b)10 to 1, (c) 10 to 1.5 and (d) 10 to 2.

Supporting Figure S1. Lee et al.

respectively.

Figure S2. These figures indicated the similar twin defect generated in as-grown SiNWs and $Si_{1-x}C_x$ NWs. The HR-TEM images and FFT image of SiNWs [ref. 17] and $Si_{1-x}C_x$ NWs are presented in (a), (b) and (c), (d),

Supporting Figure S2. Lee et al.

Figure S3. XPS results of as-grown SiNWs and $Si_{1-x}C_x$ NWs as a function of CH_3SiH_3 gas flow rate.

Supporting Figure S3. Lee et al.

formula which is generally well-known [refer to J. Phys. Chem. C 2010, 114, 15274].

In case of CH₃SiH₃ 1.5 sccm

	Si 2p (at. %)	C 1s (at.%)
RSF	0.368	0.314
10min	95.43	4.57
20min	95.28	4.71

2 sccm C 1s	In case of CH ₃ SiH ₃ 2 sccm		
a in		Si 2p (at. %)	C 1s (at. %)
	RSF	0.368	0.314
	10min	86.55	13.44
286 284 282 280	20min	87.48	12.52
ding Energy (eV)			

Figure S4. Sputtering results (Si 2p, C 1s) of $Si_{1-x}C_x$ NWs in case of CH_3SiH_3 gas flow rate of 1.5 and 2 sccm. After sputtering process for 35 min, native oxide peak at near 103 eV in Si 2p and weakly bound C atoms in C 1s disappeared while the peak at near 282 eV in C 1s remained maintaining their intensity. The relative atomic concentration between pure Si and C could be obtained in case of sputtering process for 10, 20 min and it was calculated as presented in right-handed tables by using compositional analysis

Supporting Figure S4. Lee et al.

Figure S5. Raman (a) and FT-IR (b) spectra of $Si_{1-x}C_x$ NWs in case of CH_3SiH_3 gas flow rate of 0 and 2 sccm. The Si-C Raman peak and Si-C streching vibration in FT-IR can be observed at 605 cm⁻¹, which is generally well-known [refer to J. Appl. Phys. 2010, 107, 023518]. However, in our case, the peak related to Si-C bonding was not observed; moreover, the spectra is almost same with as-grown SiNWs and $Si_{1-x}C_x$ NWs.

Supporting Figure S5. Lee *et al*.

Figure S6. Reflectance spectra of a Si wafer an obtained via UV-Vis spectrometry.

Figure S6. Reflectance spectra of a Si wafer and $Si_{1-x}C_x$ NWs depending on the CH_3SiH_3 gas flow rate

Supporting Figure S6. Lee et al.