Electronic Supplementary Information

Large-scale solution synthesis of α-AlF₃·3H₂O nanorods under low supersaturation conditions and their conversion to porous β-AlF₃ nanorods

Marc Estruga, Fei Meng, Linsen Li, Lianyi Chen, Xiaochun Li and Song Jin*

Fig S1. PXRD of additional samples in Figure 2: Sample 2 (a), Sample 5 (b), Sample 6 (c) and Sample 7 (d). Standard patterns of α -AlF₃·3H₂O (JCPDS #43-0436), and NH₄AlF₄ (JCPDS #20-0077 and 83-0718) are included for comparison.

At higher $[HF]/[A1^{3+}]$ ratio (550:1, Sample 7) and also after 60 °C heating, the product is no longer α -AlF₃·3H₂O (Fig. S1 plot d). By comparing the experimental pattern to the known phases in the Al-F systems, it appears that a mixture of two NH₄AlF₄ phases was obtained. We suspect that the hydronium analogue, that is, (H₃O)AlF₄, is the product that precipitates out after heating the solution to 60 °C for 24 h. The ammonium compounds have a layered structure with cations occupying the interstices between AlF₆ octahedra chain layers,¹ so it is reasonable that the hydronium ions can substitute the NH₄⁺ ions at the interlayer positions, which leads to isostructural phases. This would explain the similarity of the PXRD patterns.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2012

Fig S2. Size distribution survey of the as-prepared α -AlF₃·3H₂O nanomaterials: Sample 1 (A, B), Sample 2 (C, D), Sample 3 (E, F), Sample 4 (G, H), Sample 5 (I, J).

Fig. S3. Simulated speciation distribution of sample 6.

Fig. S4. Simulated speciation distribution of sample 7.

References

1. N. Herron, D. L. Thorn, R. L. Harlow, G. A. Jones, J. B. Parise, J. A. Fernandez-Baca and T. Vogt, *Chem. Mater.*, 1995, **7**, 75-83.