Supporting Informations

Control of the thermal hysteresis of the prototypal spin-transition Fe^{II}(phen)₂(NCS)₂ compound *via* the microcrystallites environment: experiments and mechanoelastic model.

Antoine Tissot, ^a Cristian Enachescu^b and Marie-Laure Boillot*^a

^a ICMMO, ECI, UMR CNRS 8182, Université Paris-Sud 11, 91405 Orsay cedex, France.
Fax: 33 16915 4754; Tel: 33 16915 4755; E-mail: marie-laure.boillot@u-psud.fr.
^b Faculty of Physics, "Alexandru Ioan Cuza" University, 7005506, Iasi, Romania.

- 1- Characterizations of [Fe(phen)₃(NCS)₂].2H₂O (1)
- 2- Characterizations of microparticles (2-matrix)
- **3-** Magnetic properties of microparticles (2-matrix)
- 4- Magnetic properties of polycrystalline samples (bulk and bulk-matrix) of Fe(phen)₂(NCS)₂ and Fe(3-MeO-SalEen)₂PF₆

1- Characterization of [Fe(phen)₃(NCS)₂].2H₂O (1)

The X-ray diffraction pattern of the powder **1** was collected at room temperature. Figure S1 shows the diffraction pattern limited to the diffraction angles 2θ angles between 8 and 30 °. A number of sharp lines (for example at $2\theta \approx 8.61$, 9.51, 9.86, 10.55, 22.71, 24.51 and 25.62°) can be considered as specific markers of this material.

IR (KBr pellet, Fig. S2) v/ cm⁻¹: 3097, 3077, 3052 ($v_{stretch}$ of CH_{aromatic}), 2050 ($v_{stretch}$ of CN_{NCSe}-), 1629 1600, 1423 and 1409 ($v_{stretch}$ of CN and CC_{phen}), 844 and 722 (v_{deform} of CH_{phen}).

2- Characterizations of the microparticles (2-matrix)

In Figure S1, the X-Ray diffraction patterns of microparticles (2, 2-PVP, 2-PEG, 2-PEG heated) present new peaks whose positions and relative intensities compare to those calculated from the previously reported single-crystal structure of $Fe(phen)_2(NCS)_2$.¹ Moreover, no diffraction peaks of $[Fe(phen)_3(NCS)_2].2H_2O$ can be observed. These observations confirm the formation of crystalline particles of $Fe(phen)_2(NCS)_2$.

Figure S1: Powder X-ray diffraction patterns recorded for the bare (2) and embedded (2-PEG, 2-PEG heated and 2-PVP) microparticles. They are compared with those of [Fe(phen)₃(NCS)₂].2H₂O and Fe(phen)₂(NCS)₂ (calculated from [2]). Patterns of samples 2-PEG and 2-PEG heated are limited to the 8-18° interval, as diffraction peaks of crystalline polymers (noted with *) prevent the observation of any particles peak at higher angles.

The 293 K FT-IR spectrum (Figure S2) of **2** (KBr pellet) is consistent with the data previously reported for Fe(phen)₂(NCS)₂ (v/ cm⁻¹: 2074, 2062 (v_{stretch} of CN_{NCSe-}), 1624, 1591, 1573,

1513, 1492, 1449, 1424 and 1413 ($v_{stretch}$ of CN and CC_{phen}), 847 and 723 (v_{deform} of CH_{phen})).² At 100 K, the frequencies at 2106 and 2115 cm⁻¹ ($v_{stretch}$ of CN_{NCSe}, LS form) appear whereas the corresponding HS frequencies disappear.²

The IR spectrum of **2-PVP** (KBr pellet) shows the coexistence of vibrational peaks corresponding to the complex and PVP. A number of peaks can only be observed in the spectra of $Fe(phen)_2(NCS)_2$ (2074 and 2061, 1440, 1102, 864, 638, 471, 418, and 280 cm⁻¹).

Figure S2: Infra-Red spectra of **2** (at 293 and 100 K) and **2-PVP** in KBr pellets compared with the spectrum of $[Fe(phen)_3(NCS)_2].2H_2O$, the starting compound.

3- Magnetic properties of the microparticles

The magnetic properties of microparticles embedded in different matrices (2-PEG, 2-PEG heated, 2-PEG dispersed, 2-PVP and 2-glycerol) were recorded with a SQUID magnetometer at a 1K.min⁻¹ sweeping rate. Due to the presence of an important amount of diamagnetic species (polymer or glycerol) around the particles, some approximations have to be made to extract the $\chi_M T vs. T$ curves:³

- consistently with the FT-IR and X-ray diffraction data, all the composites are considered as HS species at 293 K.

- at low temperature (between 10 and 80 K), it is assumed that the composites follow a Curie Law (*i.e.* the samples do not contain magnetic impurities, as it has been checked with field dependent measurements).

Figure S3: Magnetization measurements performed on particles embedded in glycerol with different experimental conditions: at 1 K/min after quenching at 10 K (**2-glycerol**), at 1 K/min starting from 250 K (**1 K/min**) and at 0.5 K/min starting from 250 K (**0.5 K/min**).

For the **2-glycerol** sample, very small changes (figure S3) are observed when the sweeping rate is decreased from 1 to 0.5 K/min, indicating that the observed hysteresis is not related to thermalization issues. More interestingly, measurements at the same sweeping rate but with different cooling procedures (slow cooling at 1 K/min and fast quenching at 10 K) present sizeable differences, especially in the heating regime.

Figure S4: Evolution of the magnetization of **2-glycerol** (dispersion of **2** in glycerol, 1.65% wt). (left) temperature dependance of M observed after the sample supercooling at 10 K, the first thermal cycle between 70 and 250 K (sweeping rate at 1 Kmin⁻¹) was followed by a cooling down to 10 K, the measurement of the ascending branch between 100 and 180 K (left side, sweeping rate at 1 Kmin⁻¹), then the kinetic of magnetization at 180 K (right side). Finally the

sample was warmed to 250 K, then the measurement of the descending branch was carried out between 250 and 180 K (left side, sweeping rate at 1 Kmin⁻¹), temperature at which the kinetic of magnetization was also recorded (right side).

4- Magnetic properties of microcrystalline samples (bulk and bulk-matrix) of Fe(phen)₂(NCS)₂ and Fe(3-MeO-SalEen)₂PF₆

Figure S5: Magnetic behaviors of the polycrystalline sample (bulk, polymorph I, reference 4,) of $Fe(phen)_2(NCS)_2$, before and after the crystallites dispersion in glycerol (1.3 % wt). The magnetic measurements were performed at a sweeping rate of 1 Kmin⁻¹, after an initial freezing at 10 K (**bulk-glycerol**).

Figure S6: Magnetic behaviors of the polycrystalline sample of $Fe^{III}(3-MeO-SalEen)_2PF_6$ before (bulk, starting material in reference 3) and after the crystallites dispersion in eicosan (1.28% wt) or glycerol (1.45% wt). The measurements were performed at a sweeping rate of 1 Kmin⁻¹; the samples dispersed in glycerol or eicosan were first freezed at 10 K, then thermally cycled.

References

- ¹ B. Gallois, J.-A. Real, C. Hauw and J. Zarembowitch, *Inorg. Chem.* 1990, **29**, 1152.
- ² G. Brehm, M. Reiher, S. Schneider and J. Phys. Chem. A, 2002, 106, 12024.
- ³ A. Tissot, L. Rechignat, A. Bousseksou and M.-L. Boillot, J. Mater. Chem., 2012, 22, 3411.

⁴ A. Bousseksou, N. Negree, M. Goiran, L. Salmon, J.-P. Tuchagues, M.-L. Boillot, K. Boukheddaden and F. Varret, *Eur. Phys. J.*, 2000, **13**, 451-456; A. Bousseksou, J. J. McGarvey, F. Varret, J.-A. Real, J.-P. Tuchagues, A. C. Dennis and M.-L. Boillot, *Chem. Phys. Lett.*, 2000, **318**, 409-416.