Supporting Information

Contents

- Figure S1. Pore size distribution of SiO₂ and SiO₂-TiO₂ aerogel particles.
- Figure S2. Pore size distribution of pure TiO₂ photoanode and typical aerogel photoanode.
- Figure S3. SEM image of aerogel photoanode with high percentage of aerogel incorporated.
- **Figure S4.** Typical J-V curves of DSC based on pure TiO₂, SiO₂ aerogel and SiO₂-TiO₂ hybrid aerogel-modified photoanodes.
- **Figure S5.** Electrochemical impedance spectra of DSCs based on pure TiO₂ and aerogel photoanodes.
- Figure S6. Open-circuit voltage decay (OCVD) curves of DSCs based on pure TiO₂ and aerogel photoanodes.

Figure S7. External quantum efficiency of DSCs based on pure TiO₂ and aerogel photoanodes.

Table S1. EIS parameters obtained by fitting the Byquist plots with the equivalent circuit forDSCs based on pure TiO_2 and aerogel based photoanodes.

Figure S1. Pore size distribution of SiO₂ and SiO₂-TiO₂ aerogel particles obtained from N₂ adsorption-desorption measurement, illustrating the change of the pore size in aerogel with the deposition of TiO₂ nanoparticles deposited on SiO₂ template.

Figure S2. Pore size distribution of pure TiO_2 photoanode and SiO_2 - TiO_2 aerogel photoanode obtained from N₂ adsorption-desorption measurement.

Figure S3. SEM image of aerogel based photoanode film with high percentage of SiO_2 -TiO_2 aerogel incorporated in the slurry of hydrothermal TiO_2 nanoparticles (ATP value: 30%), illustrating that the large-size aerogel particles may induce large amount of cracks in the film and deteriorate the overall film quality.

Figure S4. Typical J-V curves of DSC based on pure TiO_2 , SiO_2 aerogel and SiO_2 - TiO_2

hybrid aerogel-modified photoanodes.

Figure S5. a) Electrochemical impedance spectra (left) of DSCs based on pure TiO_2 and aerogel based photoanodes, illustrating that the aerogel based cell has the similar recombination frequency with the pure TiO_2 cell. b) Equivalent circuit used for the calculation of EIS parameters.

Figure S6. Open-circuit voltage decay (OCVD) curves of DSCs based on pure TiO_2 and aerogel based photoanodes, illustrating that aerogel photoanodes have much faster recombination between electron and the electrolyte than pure TiO_2 photoanode.

Figure S7. External quantum efficiency of DSCs based on pure TiO_2 and aerogel based photoanodes, illustrating that aerogel photoanodes have much higher light-harvesting capacity than pure TiO_2 photoanode.

Table S1. EIS parameters obtained by fitting the Byquist plots with the equivalent circuit in Figure S5b for DSCs based on pure TiO_2 and aerogel based photoanodes.

Electrode	R_w	R_k	k _{eff}	$ au_{eff}$	D_{eff}
	(Ω)	(Ω)	(s^{-1})	(ms)	$(cm^2/s \times 10^{-4})$
Pure TiO ₂	5.15	130.80	25.7	39	8.93
$TiO_2 + 5\%$ aerogel ^a	4.10	78.89	25.7	39	5.46
$TiO_2 + 10\%$ aerogel	4.35	84.46	25.7	39	5.30
$TiO_2 + 15\%$ aerogel	4.78	111.30	21.23	47	5.98

[a] Packing density of SiO₂-TiO₂ hybrid aerogel: 0.202 g/cm³.