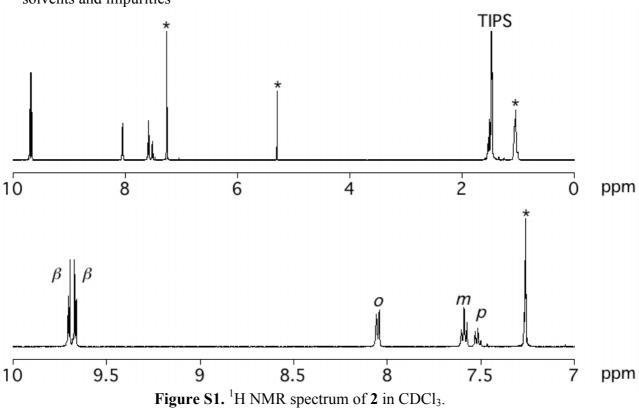
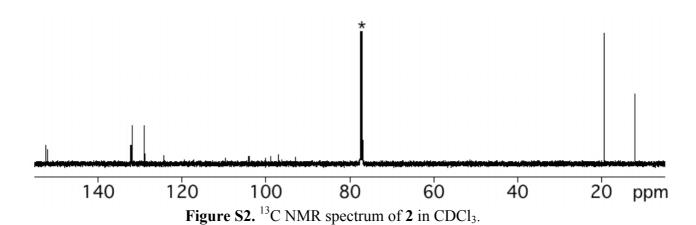
Electric Supplementary Information

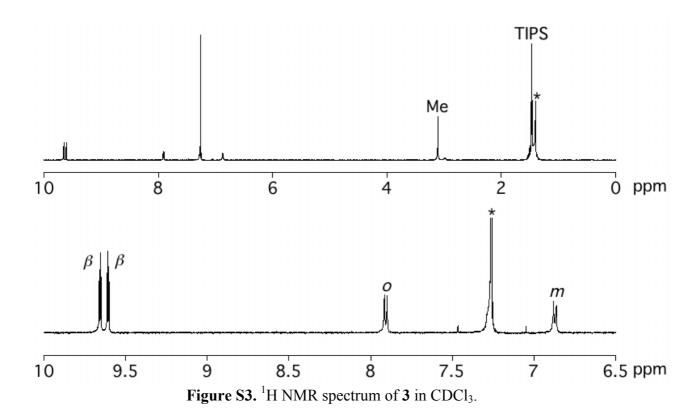
Soluble Porphyrin Donors for Small Molecule Bulk Heterojunction Solar Cells

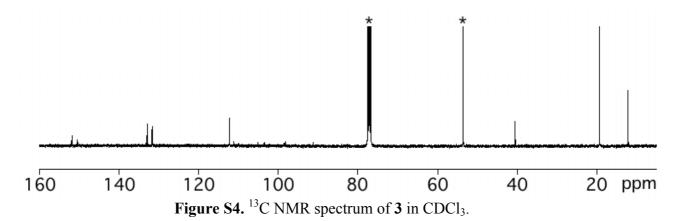
Junichi Hatano, Naoki Obata, Shigeru Yamaguchi, Takeshi Yasuda, and Yutaka Matsuo*

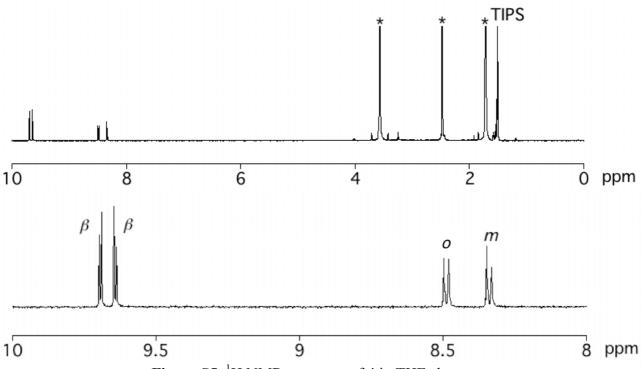
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

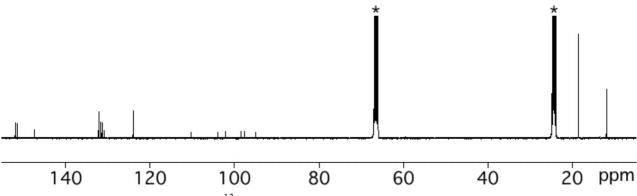

Mitsubishi Chemical Group Science and Technology Research Center, Yokohama 227-8502, Japan. National Institute for Materials Science, Sengen, Tsukuba 305-0047, Japan


-Table of Contents-


- 1. NMR Spectra
- 2. X-ray Crystallographic Studies
- 3. Thermogravimetric-Differential Thermal Analysis
- 4. Cyclic Voltammetry (CV)
- 5. Hole-only and Electron-only Device Fabrication and Data
- 6. OFET Device Fabrication and Data
- 7. Atomic Force Microscopy (AFM)
- 8. Reference


1. NMR Spectra


* = solvents and impurities



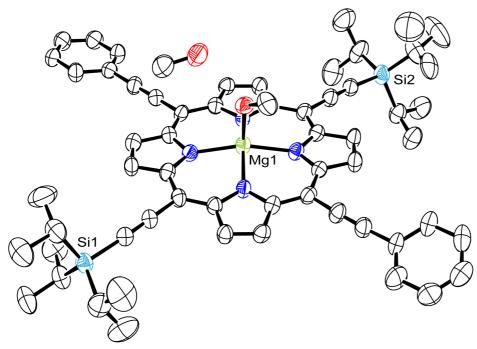
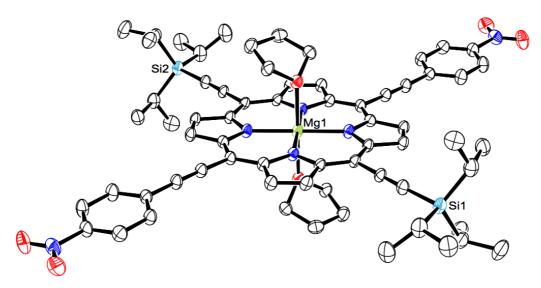

Figure S5. ¹H NMR spectrum of **4** in THF- d_8 .

Figure S6. 13 C NMR spectrum of **4** in THF- d_8 .


2. X-ray Crystallographic Studies

Single crystals of 2 suitable for X-ray analysis were obtained by slow diffusion of methanol into a solution of 2 in CHCl₃.

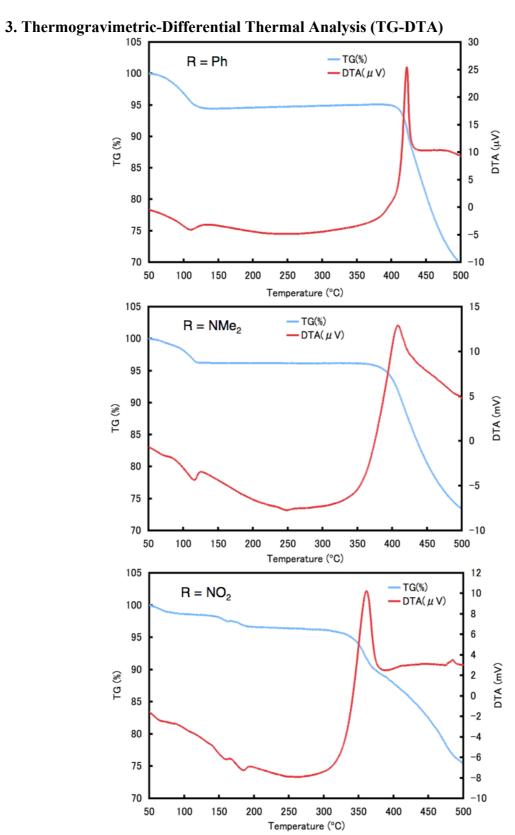


Figure S7. X-ray crystal structure of compound **2** coordinated by methanol. $C_{60}H_{68}MgN_4O_2Si_2$, Mw = 957.67, triclinic, P-I (#2), a = 10.7018(2), b = 16.4164(3), c = 16.4397(3) Å, $\alpha = 102.6540(10)^\circ$, $\beta = 98.9910(10)^\circ$, $\gamma = 95.3040(10)^\circ$, V = 2759.28(9) Å³, Z = 2, T = 123 K, $R_1 = 0.1206$ [$I > 2\sigma(I)$] $wR_2 = 0.3153$ [All data], GOF [$I > 2\sigma(I)$] = 1.202.

Single crystals of 4 suitable for X-ray analysis were obtained by slow diffusion of methanol into a solution of 4 in THF.

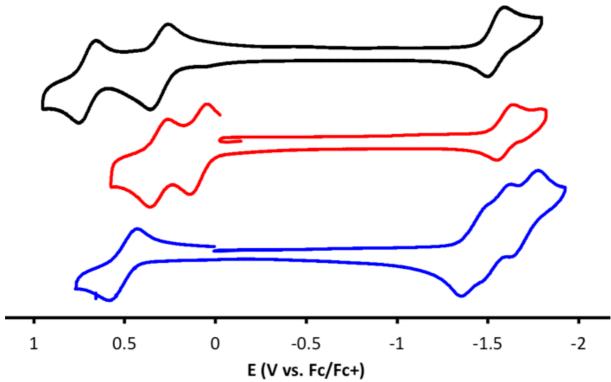


Figure S8. X-ray crystal structure of compound **4** coordinated by THF. $C_{66}H_{74}MgN_6O_6Si_2$, Mw = 1127.80, monoclinic, $P2_1/n$ (#14), a = 15.3573(3), b = 7.48620(10), c = 27.0680(5) Å, $\beta = 103.4350(10)^\circ$, V = 3026.79(9) Å³, Z = 2, T = 123 K, $R_1 = 0.0775$ [$I > 2\sigma(I)$] $wR_2 = 0.2465$ [All data], GOF [$I > 2\sigma(I)$] = 1.033.

Figure S9. TG-DTA curves of compounds **2**, **3** and **4**. About 5% mass reduction of compounds **2** and **3** around 100 °C are attributed the removal of methanol that coordinated to the magnesium in reprecipitation.

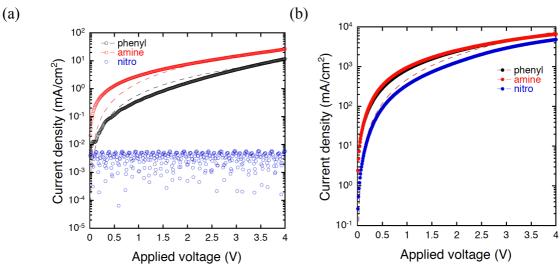

4. Cyclic Voltammetry (CV)

Figure S10. Cyclic voltammograms of compounds **2** (black), **3** (red) and **4** (blue). Measurements were performed in CH_2Cl_2 (THF for compound **4**) solution containing TBAPF₆ (0.1 M) as a supporting electrolyte at 25 °C with a scan rate of 100 mV/s. Glassy-carbon, platinum wire, and Ag/AgClO₄ electrodes were used as working, counter, and reference electrodes, respectively. The potential was corrected against Fc/Fc⁺. The HOMO and LUMO levels were estimated by the following equation; HOMO = $-(4.8 + E_{1/2}(red))$.

5. Hole-only and Electron-only Device Fabrication and Data

The hole mobilities of the porphyrin film was evaluated by the SCLC model using hole-only devices. The hole mobilities and the electron mobilities of the blend films composed of porphyrins and PC₆₀BM in a mixture of 1:4 weight ratio were also evaluated by the SCLC model using hole-only and electron-only devices, respectively. For fabrication of hole-only device using each porphyrin as p-type semiconducting material, a 145-nm-thick, patterned indium-tin oxide (ITO) glass with a sheet resistance of 8 Ω /square was used as the substrate. poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Clevios AI4083) layer was formed on the glass/ITO substrate to obtain a 30-nm-thick thin film. For fabricating blend film, compound 2 or 3:PC₆₀BM in a 1:4 mixture was dissolved in chlorobenzene to obtain each solution (total concentration, 3.0 wt%). Compound 4:PC₆₀BM in a 1:4 mixture was dissolved in THF/toluene (1/1 wt ratio) to obtain a solution (total concentration, 1.5 wt%). For fabricating porphyrin film, compounds 2 and 3 were dissolved in chloroform, and compound 4 was dissolved in THF to obtain each porphyrin solution (1.0 wt%). Each blend film, porphyrin film was formed by spin-coating method at 4500 rpm, 30 s for compound 2 or 3, or 3000 rpm, 30 s for compound 4 on the ITO/PEDOT:PSS substrate. MoO₃ (10 nm) was deposited in vacuum (3 x 10⁻⁴ Pa) on top of the porphyrin layer to reduce energy barrier for hole injection, followed by deposition of an aluminum electrode (Al, 110 nm) in vacuum. For fabrication of electron-only device using each compound as n-type semiconducting material, a 110-nm-thick, patterned aluminum vacuum-deposited (3 x 10⁻⁴ Pa) on the glass was used as the substrate. Compound 2 or 3:PC₆₀BM in a 1:4 mixture was dissolved in chlorobenzene to obtain each solution (total concentration, 3.0 wt%). Compound 4:PC₆₀BM in a 1:4 mixture was dissolved in THF/toluene (1/1 wt ratio) to obtain a solution (total concentration, 1.5 wt%). Each blend film was formed by spin-coating method at 4500 rpm, 30 s for compound 2 or 3, or 3000 rpm, 30 s for compound 4 on the ITO/Al substrate. We consider that the difference of the blend film thickness between ITO/PEDOT:PSS substrate and ITO/Al substrate is attributed to wettability of each solution on each substrate surface. LiF (0.6 nm) was deposited in vacuum (3 x 10⁻⁴ Pa) on top of blend film to reduce the energy barrier for electron injection, followed by the deposition of an aluminum electrode (Al, 110 nm) in vacuum. All devices were encapsulated in a glove box in nitrogen atmosphere. The current of the fabricated hole-only and electron-only devices was measured with a sweeping voltage using a Keithley 2400 source measurement unit controlled by a computer. A film thickness is obtained by using a Dektak 6M stylus profiler.

Figure S11. *J-V* curves of the devices. (a) hole mobility and (b) electron mobility of blend films were evaluated by space-charge current limited (SCLC) model. Dash lines show $J \sim V^2$.

Table S1. Summary of hole mobilities (μ_h) and electron mobilities (μ_e) of the blend films using porphyrins and PC₆₀BM in a mixture of 1:4 weight ratio.

Blend films – Compound:PC ₆₀ BM (1:4)	Hole-only device		Electron-only device	
	$[cm^2/Vs]$	Thickness [nm]	$\mu_e \ (\mathrm{cm^2/Vs})$	Thickness [nm]
2 (R = H)	2.3 x 10 ⁻⁵	175.5	9.1 x 10 ⁻⁴	76.7
$3 (R = NMe_2)$	3.7 x 10 ⁻⁵	174.5	5.9 x 10 ⁻⁴	66.5
4 ($R = NO_2$)	no data	139.5	1.2 x 10 ⁻³	96.6

Hole-only device configuration: glass/ITO/PEDOT:PSS/blend film/MoO₃/Al, electron-only device configuration: glass/Al/blend film/LiF/Al.

Table S2. Summary of hole mobilities (μ_h) of compounds **2**, **3** and **4** evaluated by SCLC model.

Compound	Solvent	Thickness [nm]	Hole mobility [cm ² /Vs]
2 (R = H)	CF	144.4	4.6 × 10 ⁻⁵
$3 (R = NMe_2)$	CF	141.6	8.0×10^{-4}
$4 (R = NO_2)$	THF	139.8	5.7 × 10 ⁻⁴

Hole-only device configuration: glass/ITO/PEDOT:PSS/porphyrin film/MoO₃/Al

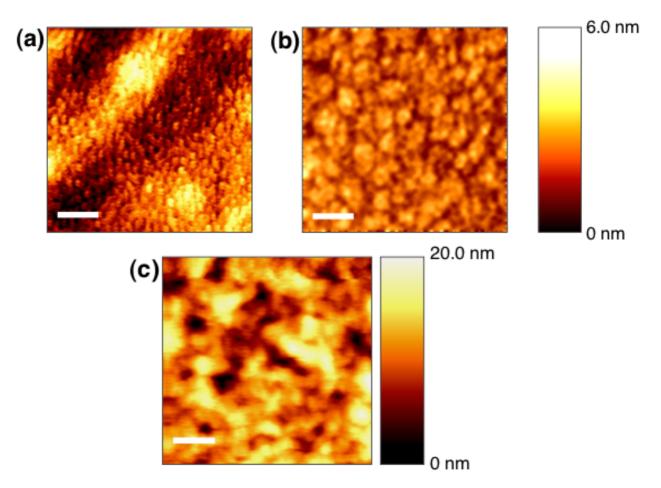
6. OFET Device Fabrication and Data

In order to estimate the field-effect hole mobility of porphyrin derivatives, we fabricated and characterized OFETs that have a top-contact geometry. A substrate of glass/Au gate electrode / Parylene-C insulator was prepared using methods given in previous papers. Organic semiconductors were spin-coated onto the Parylene-C layer. The substrate was transferred to an N_2 glovebox and then dried at 80° C for 10 min on a hot plate. Source and drain electrodes of Au (40 nm) were thermally evaporated through shadow masks. The channel length and width were fixed at 75 μ m and 5 mm, respectively. OFET measurement was conducted under air using a Keithley 2636A source measurement unit.

Table S3. Summary of top-contact OFET performances of compounds **2**, **3** and **4**. (CB = chlorobenzene, CF = chloroform)

······································	- - - - - - - - - -				
Compound	Solvent	Thickness [nm]	Field-effect hole mobility [cm ² /Vs]	Threshold voltage [V]	On/off ratio
2 (R = H)	СВ	40	1.0×10^{-6}	-6.0	3.2 × 10
$3 (R = NMe_2)$	CF:CB = 1:1	30	3.0×10^{-3}	-4.5	7.5×10^{2}
4 ($R = NO_2$)	THF:Toluene =1:1	26	3.2×10^{-4}	-36.1	6.2×10^{3}

Device structure: Glass/gate-Au/Parylene-C/Porphyrin/Source-drain electrodes


^{2 (}R = H): 0.6 wt% in CB. Spin-coating conditions: 600 rpm, 60 s.

^{3 (}R = NMe₂): 0.5 wt% in CF/CB (1/1 wt ratio). Spin-coating conditions: 600 rpm, 60 s.

^{4 (}R = NO₂): 0.5 wt% THF/Toluene (1/1 wt ratio). Spin-coating conditions 600 rpm, 60 s.

7. Atomic Force Microscopy

Morphology of the active layer composed of each porphyrin and $PC_{60}BM$ was investigated by atomic force microscopy (AFM) in a tapping mode.

Figure S12. Surface topographies of the active layers composed of each porphyrin and $PC_{60}BM$ in a 1:4 weight ratio coated on glass/ITO/PEDOT:PSS observed by AFM. (a) Compound **2** (surface roughness, Ra = 0.74 nm), (b) compound **3** (Ra = 0.57 nm), and (c) compound **4** (Ra = 2.5 nm). Scale bars indicate 500 nm.

8. Reference

- [1] a) M. A. Lampert and P. Mark, *Current Injection in Solids*, 1970; b) P. W. M. Blom, M. J. M. de Jong, J. J. M. Vleggaar, *Appl. Phys. Lett.* **1996**, *68*, 3308.
- [2] T. Yasuda, K. Fujita, H. Nakashima, T. Tsutsui, *Jpn. J. Appl. Phys.* **2001**, *42*, 6614.