Electronic Supplementary Information

A Plasmonic Nano-antenna With Controllable Resonance Frequency: Cu_{1.94}S-ZnS Dimeric Nanoheterostructure Synthesized in Solution

Feng Huang, Xiaolei Wang, Ju Xu, Daqin Chen, Yuansheng Wang*

1. Detailed calculation of *R* and *L* values

To figure out the value of *R* and *L*, following constants for $Cu_{1.94}S$ is obtained from references ¹⁻³

$$v_h = 1.06 \times 10^{15} s^{-1}, \ m_h = 0.8 m_0 = 7.2 \times 10^{-31} kg$$

 $h = 1.6 \times 10^{-19} C, \ N_h = 1.0 \times 10^{27} m^{-3}$

Considering that the Cu_{1.94}S nanospheres have mean diameter of $\delta \sim 18$ nm, the values of *R* and *L* can be figured out as following:

$$R = \frac{m_h v_h}{h^2 \delta N_h} = 1.46 k\Omega$$
$$L = \frac{m_h}{h^2 \delta N_h} = 1.56 \, pH$$

2. Detailed deviation of equation (5) in the main text

Light absorbance measurements are carried out by detecting the intensity of light that transmits through the colloid solution containing the $Cu_{1.94}$ S-ZnS nanoheterostructure, as demonstrated in Figure S1. The absorption coefficient *A* is determined by the following equation:

$$\frac{I}{I_0} = exp(-A)$$

where I_0 and I represent intensity of the incident and transmitted light respectively. Following Lambert's law, the absorption coefficient A could be described as:

$$A = \alpha n d$$

where α is the extinction cross-section of an individual nanoparticle, *n* the concentration of nanoparticles, *d* the transmission distance. In present work, α is the sum of scattering cross-section (*s*₀) and absorption cross-section (*h*₀) of an individual nano-antenna, i.e., $\alpha = s_0 + h_0$. Since the concentration of colloid is low and the interactions between nanoparticles are therefore week, *h*₀ could be regarded proportional to the frequency dependent response *H*

of the nano-antenna, i.e., $h_0 \propto H(\lambda)$, while s_0 is a constant. Hence, the absorption coefficient *A* is wavelength λ dependent, and Equation (6) is converted to:

$$A(\lambda) = \alpha nd = s_0 nd + h_0 nd = S + NH(\lambda)$$
$$A(\lambda) = S + \frac{NR^2}{2}$$

$$A(\lambda) = S + \frac{2\pi c_0}{R^2 + (\frac{2\pi c_0}{\lambda}L - \frac{\lambda}{2\pi c_0 C})^2}$$

where N represents a parameter related to the amount of nano-antennas and S denotes the scattering loss of nanoheterostructure in solution.

3. Figure S1-S5

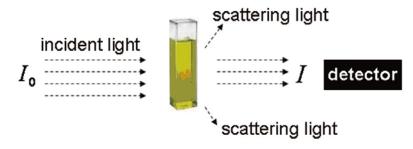


Figure S1 Schematic illustration of light absorbance measurement.

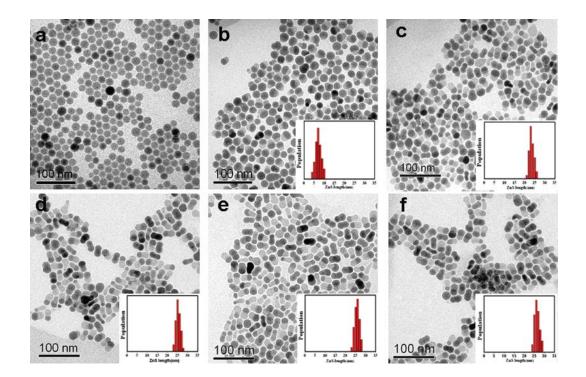


Figure S2 TEM micrographs of Cu_{1.94}S nanosphere precursors (a), and Cu_{1.94}S-ZnS nanoheterostructures having reacted for 5 min (b), 15 min (c), 20 min (d), 25 min (e), and 30 min (f) respectively; insets are the histograms showing ZnS length distributions by measuring 100 nanoheterostructures lying horizontally.

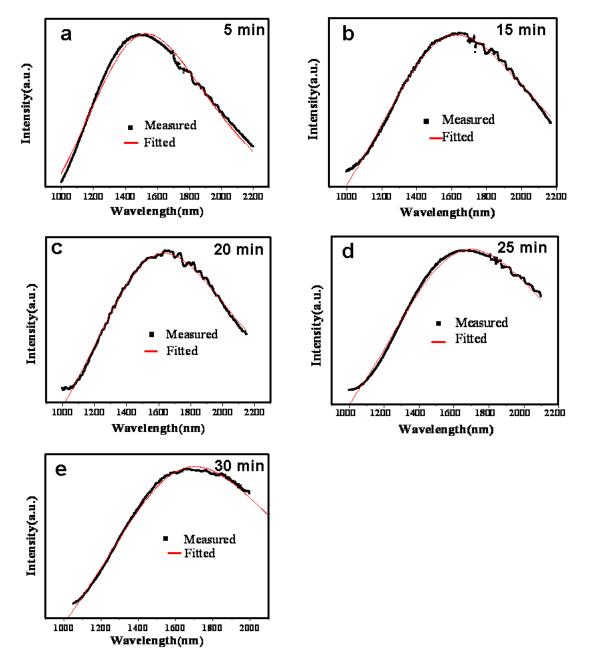


Figure S3 Measured and fitted LSPR absorption spectra of Cu_{1.94}S-ZnS nanoheterostructures having reacted for 5 min (a), 15 min (b), 20 min (c), 25 min (d), and 30 min (e), respectively.

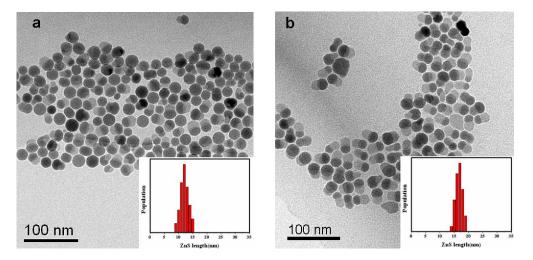


Figure S4 TEM micrographs of the Cu_{1.94}S-ZnS nanoheterostructures having reacted for 8 min (a), and 12 min (b) respectively; insets are the histograms showing ZnS length distributions by measuring 100 nanoheterostructures lying horizontally.

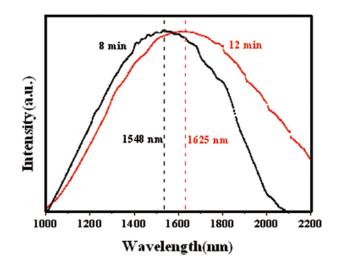


Figure S5 Absorption spectra of the Cu_{1.94}S-ZnS nanoheterostructures having reacted for 8 min and 12 min respectively.

References:

1. Y. B. He, A. Polity, I. O. sterreicher, D. Pfisterer, R. Gregor, B.K. Meyera, M. Hardt, *Physica B* 2001 308–310, 1069–1073

- 2. Y. Choi, D. Choi, L.P. Lee, Adv. Mater. 2010, 22, 1754-1758
- 3. J. M. Luther, P. K. Jain, T. Ewers, A. P. Alivisatos, Nat. Mater. 2011, 11, 361-366.