Electronic Supplementary Information

Fluorescent and paramagnetic core-shell hybrid nanoparticles

for bi-modal magnetic resonance/luminescence imaging

Weihua Di^a*, Sabareesh K. P. Velu^b, Alessandro Lascialfari^c, Chunxu Liu^d, Nicola Pinna^{g,h}, Paolo Arosio^b, Yoshio Sakka^{e,f}**, Weiping Qin^a***

^aState Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China

^bINSTM and Dipartimento di Scienze Molecolari Applicate ai Biosistemi, Università degli Studi di Milano, Milano, Italy

^cDipartimento di Fisica "A.Volta", Università degli studi di Pavia, Pavia, Italy, and CNR—Istituto di Nanoscienze-S3, Modena, Italy

^dState Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China

^eAdvanced Materials Processing Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

^fGraduate School of Pure and Applied Sciences, University of Tsukuba, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

^gDepartment of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.

^hWorld Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-744, Korea.

1 - Characterization of the as-synthesized amorphous Gd(OH)CO₃·H₂O nanoparticles

The FT-IR spectrum provides the insight into the chemical composition of the as-prepared sample (Figure S1(a)). A strong and broad absorption bands peaking at 3400 cm⁻¹ and a shoulder located at 1645 cm⁻¹ are the characteristic absorption of water of hydration in the structure or surface adsorbed water and hydroxyl groups (OH⁻).¹ The presence of carbonate anions in the molecular structure was confirmed by the appearance of absorption doublets in the region 1350–1600 cm⁻¹ (v₃ of CO₃²⁻, peaking at ~1408 and 1504 cm⁻¹) and also by the occurrence of multiple absorptions ranging from 500 to 1000 cm⁻¹ (v₂ and v₄ of CO₃²⁻).^{2,3} The elemental analysis quantifies the elemental components (mass %) of the as-prepared precursor. Elemental contents of the dried particles analyzed by the inductively coupled plasma (ICP) spectrophotometric method were listed in Table S1, yielding a Gd:C:O molar ratio of about 1:1.01:5.10. Assuming that all the carbon was from CO₃²⁻ and considering molecular neutrality, the chemical formula of the as-prepared product may be expressed as Gd(OH)CO₃·H₂O. The results are consistent with the pioneering work of Matijevic *et al.* and the recent work by Lechevallier's group.

The thermogravimetric analysis (TGA) curve of the as-prepared sample was shown in Figure S2. The weight loss of Gd(OH)CO₃·H₂O undergoes a three-step process. The first one (25-170°C) is due to the desorption of water molecules adsorbed at the particles surface due to the storage in air. The second weight loss (170-550°C) is related to the removal of water molecules due to the dehydration of hydrated compounds and the self-condensation of hydroxyl groups (O-H). This is confirmed by FTIR spectrum of the sample calcinated at 550°C (Figure S1(b)), where the characteristic absorptions of hydration water and hydroxyl groups almost disappear, compared to that of the as-prepared Gd(OH)CO₃·H₂O (Figure S1(a), SI). The third one (550-750 °C) originates from the release of CO₂ molecules that is also confirmed by FTIR spectrum of the sample calcinated at 750 °C (Figure S1(c)), in which we observed the disappearance of the characteristic vibrations of CO₃²⁻.

Figure S1. FT-IR spectra of the as-prepared $Gd(OH)CO_3 \cdot H_2O$ (a) and the samples calcinated at 550 °C (b) and 750 °C (c), respectively.

Figure S2. Thermogravimetric analysis curve of the precursor $Gd(OH)CO_3$ ·H₂O measured in air.

Table S1. Elemental content of as-prepared partilcles (mass %).

2 – The absorption spectrum of RhB entrapped core-shell nanoparticles.

Figure S3. Absorption spectra of pure RhB (full line) and RhB entrapped $Gd(OH)CO_3$ ·H₂O@SiO₂ core-shell particles (dash dotted line).

3 - Cell imaging of RhB entrapped core-shell nanoparticles.

Figure S4. A representative fluorescence image taken from an internal slice of the HeLa cell incubated with RhB entrapped core-shell nanoparticles.

Figure S5. Bright-field microscopy images of HeLa cells alone with incubation time of 4h (a), 24 h (b), 48 h (c) and 72 h (d).

References

- 1. L. Moscardini d'Assuncao, I. Giolito and M. Ionashiro, Thermochim. Acta 1989, 137, 319.
- 2. W. Matijevic and W. Hsu, J. Colloid. Interface Sci. 1987, 118, 506.

3. K. Makamoto, Infrared spectra of inorganic and coordination compounds. New York: John Wiley & Sons; 1963.