Supplemental Information for

Enhanced thermoelectric properties of Bi₂(Te_{1-x}Se_x)₃-based compounds as n-type legs for low-temperature power generations

Shanyu Wang ^{a,b}, Gangjian Tan ^a, Wenjie Xie ^a, Gang Zheng ^a, Han Li ^a, Jihui Yang ^b, Xinfeng Tang ^{a,*}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

^b Materials Science and Engineering Department, University of Washington, Seattle, WA 98105-2120, USA

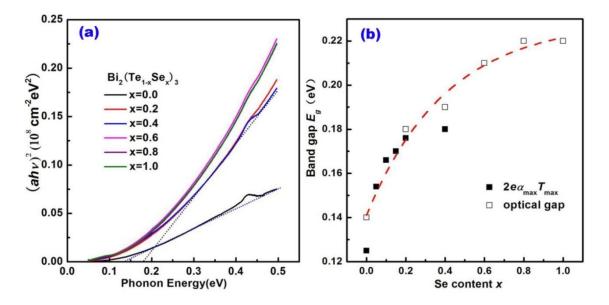


Figure S1 (a) IR spectrums and (b) optical band gap of $Bi_2(Te_{1-x}Se_x)_3+0.08\%$ wt I (x=0.1-1.0) compounds, and the unfilled cubic symbols are the results obtained from the maximum Seebeck coefficients according to the formula $E_g=2e\alpha_{max}T_{max}$.

^{*} Corresponding author.

E-mail address: tangxf@whut.edu.cn (X. F. Tang) Tel.: +86-027-87662832; fax: +86-027-87860863.

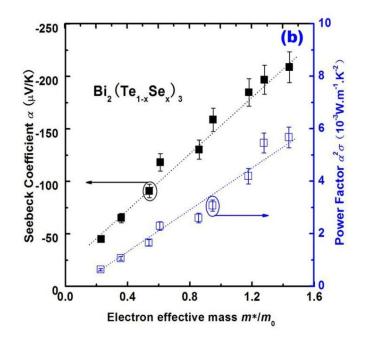


Figure S2 Seebeck coefficient and power factor at 300 K shown as a function of m^*/m_0 for Bi₂(Te_{1-x}Se_x)₃+0.08% wt I (x=0.0-1.0) solid solutions.

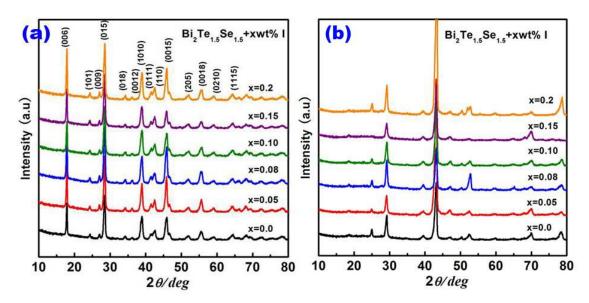


Figure S3 (a) Powder and (b) bulk XRD patterns for $Bi_2(Te_{0.5}Se_{0.5})_3$ compounds with different electron concentrations, and the measured surfaces of bulk XRD are perpendicular to the ZM direction.