Supporting Information

Rapid Microwave Reflux Process for the Synthesis of Pure Hexagonal NaYF₄:Yb³⁺,Ln³⁺,Bi³⁺ (Ln³⁺ = Er³⁺, Tm³⁺, Ho³⁺) and its Enhanced UC Luminescence

Na Niu,^a Fei He,^a Shili Gai,^a Chunxia Li,^b Xiao Zhang,^a Shaohua Huang,^a and Piaoping

Yang^a*

 ^a Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China. E-mail: yangpiaoping@hrbeu.edu.cn
^b State Key laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.

Figure S1. SEM images of NaYF₄:20% Yb³⁺,2% Er³⁺ prepared under different conditions: (A–D) sample S1–S4, (E–G) sample T1–T3 , and (H–I) sample H1–H2.

Figure S2. XRD patterns of NaYF₄:20% Yb³⁺,2% Tm³⁺ prepared with different amount of NH₄F under MW irradiation at 160 °C for 50 min: (A) 12 mmol, (B) 36 mmol, and (C) 60 mmol.

Figure S3. XRD patterns of NaYF₄:20% Yb³⁺,2% Ho³⁺ prepared with different amount of NH₄F under MW irradiation at 160 °C for 50 min: (A) 12 mmol, (B) 36 mmol, and (C) 60 mmol.

Figure S4. EDS based elemental composition of NaYF₄:Yb³⁺,Ln³⁺ crystals with different phases: (A) NaYF₄:Yb³⁺,Er³⁺, (B) NaYF₄:Yb³⁺,Tm³⁺,(C) NaYF₄:Yb³⁺,Ho³⁺. The fraction was gained by comparing relative peak intensities together with the corresponding sensitivity factors of each element.

Figure S5. EDS of NaYF₄:20% Yb³⁺,2%Er³⁺ (A), NaYF₄:20% Yb³⁺,2%Tm³⁺ (B), NaYF₄:20% Yb³⁺,2%Ho³⁺ (C), NaYF₄:20% Yb³⁺,2%Er³⁺,4%Bi³⁺ (D),

 $NaYF_{4}:20\%\,Yb^{3+},2\%\,Tm^{3+},4\%\,Bi^{3+}\,(E), \ and \ NaYF_{4}:20\%\,Yb^{3+},2\%\,Ho^{3+},4\%\,Bi^{3+}\,(F)$

prepared with 60 mmol NH₄F under MW irradiation at 160 °C for 50 min.

Figure S6. SEM images of NaYF₄:20% Yb³⁺,2%Er³⁺,4%Bi³⁺ (A), NaYF₄:20% Yb³⁺,2%Tm³⁺,4%Bi³⁺ (B), and NaYF₄:20% Yb³⁺,2%Ho³⁺,4%Bi³⁺ (C); and the XRD patterns of NaYF₄:20% Yb³⁺,2%Ho³⁺,4%Bi³⁺ and NaYF₄:20% Yb³⁺,2%Tm³⁺,4%Bi³⁺ (D). All the samples were prepared with 60 mmol NH₄F under MW irradiation at 160 °C for 50 min.