Supplementary Information

One-Step Vapor-Solid Reaction Growth of Sn@C Core-Shell Nanowires as an Anode Material for Li-Ion Batteries

Kai-Chieh Hsu,^a Chia-Erh Liu,^a Po-Chin Chen,^b Chi-Young Lee,^b and Hsin-Tien Chiu*^a

^{*a*} Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan, 30050, R. O. C.

^b Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, 30043, R. O. C.

* Corresponding authors. E-mail: htchiu@faculty.nctu.edu.tw (H.-T. Chiu)

- **Table S1.**Summary of electrochemical properties of Sn containing electrodes for rechargeable
Li-ion batteries.
- Figure S1. SEM image and energy dispersive X-ray spectrum (EDX) of product A.
- Figure S2. XRD patterns of products A and B.
- Figure S3. Raman spectra of product A and SnO₂. (Excitation wavelength: 785 nm, power: 5 mW)
- Figure S4. Thermogravimetric analysis (TGA) profile of A. The Sn and C contents are estimated to be 46.8 wt % (8.1 at %) and 53.2 wt % (91.9 at %), respectively. The analysis was taken in O₂ using a heating rate of 10 K min⁻¹.
- Figure S5. SEM images of samples prepared at (a) 873 K for 60 min, (b) 923 K for 30 min, (c) 973 K for 30 min, (d) 1073 K for 30 min, and (e) 1123 K for 30 min. C₂H₂ was flowing at 3 sccm under atmospheric pressure.
- **Figure S6.** SEM images of the electrode prepared from Sn@C core-shell NWs. (a) Low and (b) high magnification views. (c) Low and (d) high magnification views of the electrode after 100 cycles of lithiation and delithiation. The electrode was fabricated with a mixture of carbon black and binder.
- **Figure S7.** SEM images of (a) the commercial Sn powder, (b) the electrode prepared from the powder, and (c) low and (d) high magnification views of the electrode after 50 cycles of lithiation and delithiation. The Sn particles shown in (b) and (c) were mixed with carbon black and binder used for the electrode fabrication.

Table S1. Summary	y of electrochemical	properties of Sn	containing electrodes	for rechargeable Li-ion batteries.
-------------------	----------------------	------------------	-----------------------	------------------------------------

Electrode material	Morphology and Composition	Electrochemical Performance				
		Working Potential (V)	Cycling Rate	Capacity	Cathode	Ref
SnO ₂ NTs	Diameter: 180 – 230 nm	0.005 - 2	80 cycles at 0.05 mA·cm ⁻²	525 mAh/g	Li foil	21 ^a
SnO ₂ @C core/shell NTs	SnO ₂ NPs: 10 nm CNT diameter: 200 nm (SnO ₂ : 73.3 wt %)	0.005 - 3	200 cycles at 0.3 mA·cm ⁻² (0.3 mA·cm ⁻² \cong 0.5 C)	540 mAh/g (200 mAh/g from CNT)	Li foil	22 ^b
Hydrobenzamide- capped Sn NPs	Particle size: 50 nm	0-1.5	30 cycles at 0.2 C (1 C = 900 mA/g)	500 mAh/g	Li foil	23°
Vertical arrays of Sn NWs on Si substrates	Diameter: 50 – 100 nm	0.01 – 1.2	15 cycles at 4200 mA/g	400 mAh/g	Li foil	24 ^d
Sn@C nanocomposite	Sn@C rambutan-like nanoarchitecture (C: 73 wt %; Sn: 23 wt %)	0.005 - 2	200 cycles at 100 mA/g	311 mAh/g (168 mAh/g from C sphere)	Li foil	10 ^e
Sn@C@CNT nanostructures	Sn NPs: 50 – 170 nm C layer: 3 – 10 nm arrays of CNTs: length 30 μm diameter 180 – 280 nm	0.005 - 3	80 cycles at 0.1 mA·cm ⁻²	490 mAh/g	Li foil	9 ^f
Sn@Cu core/shell type NPs	Core, Sn NP: 8.65 nm Outer layer, Cu: 1.35 nm	2.7 - 4.3	170 cycles at 0.8 C (1C = 600 mA/g)	560 mAh/g	LiCoO ₂	25 ^g
Nanoporous Au-supported nanocrystalline Sn	Nanoporous Au Sn NPs (Au: 17.2 wt %; Sn: 82.8 wt %)	0.005 - 2 0.005 - 1	140 cycles at 0.1 C (1C = 1000 mA/g) 140 cycles at 8 C (1C = 1000 mA/g)	440 mAh/g 260 mAh/g	Li foil	11 ^h
Sn@C core/shell NWs	Core/shell NW diameter: 100 – 350 nm shell thickness: 30 – 70 nm length: tens μm (C: 91.9 at %; Sn: 8.1 at %)	0.005 - 2	100 cycles at 100 mA/g 100 cycles at 1000 mA/g 100 cycles at 3000 mA/g	525 mAh/g 486 mAh/g 290 mAh/g	Li foil	This work

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is The Royal Society of Chemistry 2012

- a. Y. Wang, J. Y. Lee and H. C. Zeng, Chem. Mater., 2005, 17, 3899-3903.
- b. Y. Wang, H. C. Zeng and J. Y. Lee, Adv. Mater., 2006, 18, 645-649.
- c. Y. Kwon, M. G. Kim, Y. Kim, Y. Lee and J. Cho, Electrochem. Solid-State Lett., 2006, 9, A34-A38.
- d. J.-H. Kim, S. Khanal, M. Islam, A. Khatri and D. Choi, Electrochem. Commun., 2008, 10, 1688-1690.
- e. D. Deng and J. Y. Lee, Angew. Chem. Int. Ed., 2009, 48, 1660-1663.
- f. Y. Wang, M. Wu, Z. Jiao and J. Y. Lee, Chem. Mater., 2009, 21, 3210-3215.
- g. M. G. Kim, S. Sim and J. Cho, Adv. Mater., 2010, 22, 5154-5158.
- h. Y. Yu, L. Gu, X. Lang, C. Zhu, T. Fujita, M. Chen and J. Maier, Adv. Mater., 2011, 23, 2443-2447.

Figure S1. SEM image and energy dispersive X-ray spectrum (EDX) of product A.

Figure S2. XRD patterns of products A and B.

Figure S3. Raman spectra of product **A** and SnO₂. (Excitation wavelength: 785 nm, power: 5 mW)

Figure S4. Thermogravimetric analysis (TGA) profile of **A**. The Sn and C contents are estimated to be 46.8 wt % (8.1 at %) and 53.2 wt % (91.9 at %), respectively. The analysis was taken in O_2 using a heating rate of 10 K min⁻¹.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is The Royal Society of Chemistry 2012

Figure S5. SEM images of samples prepared at (a) 873 K for 60 min, (b) 923 K for 30 min, (c) 973 K for 30 min, (d) 1073 K for 30 min, and (e) 1123 K for 30 min. C_2H_2 was flowing at 3 sccm under atmospheric pressure.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is The Royal Society of Chemistry 2012

Figure S6. SEM images of the electrode prepared from Sn@C core-shell NWs. (a) Low and (b) high magnification views. (c) Low and (d) high magnification views of the electrode after 100 cycles of lithiation and delithiation. The electrode was fabricated with a mixture of carbon black and binder.

Figure S7. SEM images of (a) the commercial Sn powder, (b) the electrode prepared from the powder, and (c) low and (d) high magnification views of the electrode after 50 cycles of lithiation and delithiation. The Sn particles shown in (b) and (c) were mixed with carbon black and binder used for the electrode fabrication.