Supporting Information

Functional heterometallic coordination polymers with metalloligand as tunable luminescent crystalline materials

Dong-Ying Du,^a Jun-Sheng Qin,^a Cheng-Xin Sun,^b Xin-Long Wang,^{*a} Shu-Ran Zhang,^a Ping Shen,^a Shun-Li Li,^a Zhong-Min Su^{*a} and Ya-Qian Lan^{*a}

^{*a*} Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China. Fax: (+86) 431-85684009. E-mail: <u>zmsu@nenu.edu.cn; lanyq176@nenu.edu.cn</u>.

^b School of Life Sciences, Northeast Normal University, Changchun 130024, P. R. China

Fig. S1 The images of (a) IFMC-23 and (b) no addition of BMIB.

Fig. S2 XRPD patterns (top, red) and simulated patterns (bottom, black) for (a) - (e)IFMC-21 to 25 and (f) no addition of BMIB, respectively.

Fig. S3 $[ZnBr_4]^{2-}$ unit in IFMC-21.

Fig. S4 The coordination mode of the bimetallic unit $[Eu_2(COO)_2(COO)_4(H_2O)_4]$ in IFMC-21.

Fig. S5 The binding mode of the carboxylate ligand to Zn(II) ion in IFMC-21.

Fig. S6 (a) The carboxylate ligand acts as three-connected node and (b) bimetallic unit works as six-connected node in **IFMC-21**, respectively.

Fig. S7 (a) and (b) Ball-and-stick representations of the 2D sheet-like structure of **IFMC-21**. (c) Spacefill representation of 3D supramolecular structure of **IFMC-21**.

Fig. S8 The packing arrangement of **IFMC-21** in the *ac* plane, with isolated $[ZnBr_4]^{2-}$ located in the interspaces of the 2D sheet-like structure.

Fig. S9 The UV absorption spectrum of ligand H₄L.

Fig. S10 Excitation and emission spectra of H_4L in the solid state at room temperature.

Fig. S11 Excitation spectra of IFMC-21 (a) and IFMC-25 (b) in the solid state, respectively.

Fig. S12 The photographs of **IFMC-21** ((a) and (b)) and **IFMC-25** ((c) and (d)). (a) and (c): under natural light; (b) and (d): under a UV lamp.

Fig. S13 Fluorescence camera images of **IFMC-21** (a, b), **IFMC-23** (c, d) and **IFMC-25** (e, f) under different light sources (a, c and e: under natural light; b, d and f: under UV light).

Fig. S14 Solid state fluorescence decay curves of **IFMC-21** – **25** (Monitor wavelengths: a, 617 nm and b, 545 nm).

Fig. S15 The ¹H NMR spectrum of H₄L: ¹H NMR (500 MHz, DMSO-d₆) δ (TMS, ppm) 12.99 (s, 4H), 7.83 (t, *J* = 6.8, 8H), 7.63 (s, 8H), 7.40 (s, 8H), 7.28 (d, *J* = 11.4, 8H), 5.73 (d, *J* = 15.6, 8H), 4.51 (d, *J* = 17.7, 8H), 3.27 (d, *J* = 20.1, 4H).

Fig. S16 IR curves for IFMC-21 to 25.

	IFMC-21	IFMC-22	IFMC-23
Empirical formula	$C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Eu$	$C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Eu_{0.75}Tb_{0.25}$	$C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Eu_{0.5}Tb_{0.5}$
Mw	1770.57	1772.31	1774.05
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_{1}/n$	$P2_{1}/n$	$P2_{1}/n$
<i>a</i> (Å)	15.6650(10)	15.7550(12)	15.6800(9)
<i>b</i> (Å)	13.5120(8)	13.5370(10)	13.5150(8)
<i>c</i> (Å)	33.082(2)	33.101(3)	33.051(2)
β (deg)	99.9330(10)	99.7820(10)	99.786(8)
$V(\text{\AA}^3)$	6897.4(7)	6957.0(9)	6902.1(7)
Ζ	4	4	4
$D_{\rm c}({\rm Mg}\cdot{\rm m}^{-3})$	1.705	1.692	1.707
Abs.coeff. (mm^{-1})	3.971	3.965	4.026
<i>F</i> (000)	3504	3506	3508
reflns collected	34093	41097	39658
Independent reflns	12212	15842	15047
θ range (deg)	1.25 - 25.08	1.25 - 27.73	1.55 - 27.06
GOF on F^2	1.044	0.989	1.044
$R_{\rm int}$	0.0556	0.0478	0.0477
R_1^{a}	0.0545	0.0601	0.0517
wR_2 (all data) ^b	0.1744	0.2174	0.1638
- (/			
	IFMC-24	IFMC-25	
Empirical formula	$\label{eq:1} IFMC-24 \\ C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Eu_{0.25}Tb_{0.75} \\$	IFMC-25 C ₆₆ H ₅₉ N ₁₀ O ₁₁ Br ₄ Zn ₂ Tb	
Empirical formula Mw	IFMC-24 C ₆₆ H ₅₉ N ₁₀ O ₁₁ Br ₄ Zn ₂ Eu _{0.25} Tb _{0.75} 1775.79	IFMC-25 C ₆₆ H ₅₉ N ₁₀ O ₁₁ Br ₄ Zn ₂ Tb 1777.53	
Empirical formula Mw Crystal system	IFMC-24 C ₆₆ H ₅₉ N ₁₀ O ₁₁ Br ₄ Zn ₂ Eu _{0.25} Tb _{0.75} 1775.79 Monoclinic	IFMC-25 C ₆₆ H ₅₉ N ₁₀ O ₁₁ Br ₄ Zn ₂ Tb 1777.53 Monoclinic	
Empirical formula Mw Crystal system Space group	IFMC-24 C ₆₆ H ₅₉ N ₁₀ O ₁₁ Br ₄ Zn ₂ Eu _{0.25} Tb _{0.75} 1775.79 Monoclinic P2 ₁ /n	IFMC-25 $C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Tb$ 1777.53 Monoclinic $P2_1/n$	
Empirical formula Mw Crystal system Space group a (Å)	IFMC-24 C ₆₆ H ₅₉ N ₁₀ O ₁₁ Br ₄ Zn ₂ Eu _{0.25} Tb _{0.75} 1775.79 Monoclinic P2 ₁ /n 15.676(2)	IFMC-25 C ₆₆ H ₅₉ N ₁₀ O ₁₁ Br ₄ Zn ₂ Tb 1777.53 Monoclinic <i>P</i> 2 ₁ /n 15.6340(8)	
Empirical formula Mw Crystal system Space group a (Å) b (Å)	IFMC-24 C ₆₆ H ₅₉ N ₁₀ O ₁₁ Br ₄ Zn ₂ Eu _{0.25} Tb _{0.75} 1775.79 Monoclinic P2 ₁ /n 15.676(2) 13.5140(17)	IFMC-25 $C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Tb$ 1777.53 Monoclinic $P2_1/n$ 15.6340(8) 13.4910(7)	
Empirical formula Mw Crystal system Space group a (Å) b (Å) c (Å)	IFMC-24 C ₆₆ H ₅₉ N ₁₀ O ₁₁ Br ₄ Zn ₂ Eu _{0.25} Tb _{0.75} 1775.79 Monoclinic <i>P</i> 2 ₁ /n 15.676(2) 13.5140(17) 33.055(4)	IFMC-25 C ₆₆ H ₅₉ N ₁₀ O ₁₁ Br ₄ Zn ₂ Tb 1777.53 Monoclinic <i>P</i> 2 ₁ /n 15.6340(8) 13.4910(7) 33.0790(18)	
Empirical formula Mw Crystal system Space group a (Å) b (Å) c (Å) β (deg)	IFMC-24 C ₆₆ H ₅₉ N ₁₀ O ₁₁ Br ₄ Zn ₂ Eu _{0.25} Tb _{0.75} 1775.79 Monoclinic <i>P</i> 2 ₁ /n 15.676(2) 13.5140(17) 33.055(4) 99.803(2)	IFMC-25 $C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Tb$ 1777.53Monoclinic $P2_1/n$ 15.6340(8)13.4910(7)33.0790(18)99.7480(10)	
Empirical formula Mw Crystal system Space group a (Å) b (Å) c (Å) β (deg) V (Å ³)	IFMC-24 $C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Eu_{0.25}Tb_{0.75}$ 1775.79 Monoclinic $P2_1/n$ 15.676(2) 13.5140(17) 33.055(4) 99.803(2) 6900.3(15)	IFMC-25 $C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Tb$ 1777.53Monoclinic $P2_1/n$ 15.6340(8)13.4910(7)33.0790(18)99.7480(10)6876.2(6)	
Empirical formula Mw Crystal system Space group a (Å) b (Å) c (Å) β (deg) V (Å ³) Z	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	
Empirical formula Mw Crystal system Space group a (Å) b (Å) c (Å) β (deg) V (Å ³) Z D_c (Mg·m ⁻³)	$\begin{array}{c} \textbf{IFMC-24} \\ \hline C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Eu_{0.25}Tb_{0.75} \\ 1775.79 \\ \hline \textbf{Monoclinic} \\ P2_1/n \\ 15.676(2) \\ 13.5140(17) \\ 33.055(4) \\ 99.803(2) \\ 6900.3(15) \\ 4 \\ 1.709 \end{array}$	IFMC-25 $C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Tb$ 1777.53 Monoclinic $P2_1/n$ 15.6340(8) 13.4910(7) 33.0790(18) 99.7480(10) 6876.2(6) 4 1.717	
Empirical formula Mw Crystal system Space group a (Å) b (Å) c (Å) β (deg) V (Å ³) Z D_c (Mg·m ⁻³) Abs.coeff. (mm ⁻¹)	IFMC-24 $C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Eu_{0.25}Tb_{0.75}$ 1775.79 Monoclinic $P2_1/n$ 15.676(2) 13.5140(17) 33.055(4) 99.803(2) 6900.3(15) 4 1.709 4.056	IFMC-25 $C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Tb$ 1777.53 Monoclinic $P2_1/n$ 15.6340(8) 13.4910(7) 33.0790(18) 99.7480(10) 6876.2(6) 4 1.717 4.099	
Empirical formula Mw Crystal system Space group a (Å) b (Å) c (Å) β (deg) V (Å ³) Z D_c (Mg·m ⁻³) Abs.coeff. (mm ⁻¹) F(000)	$\begin{array}{c} \textbf{IFMC-24} \\ \hline C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Eu_{0.25}Tb_{0.75} \\ 1775.79 \\ \hline \textbf{Monoclinic} \\ P2_1/n \\ 15.676(2) \\ 13.5140(17) \\ 33.055(4) \\ 99.803(2) \\ 6900.3(15) \\ 4 \\ 1.709 \\ 4.056 \\ 3510 \end{array}$	IFMC-25 $C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Tb$ 1777.53Monoclinic $P2_1/n$ 15.6340(8)13.4910(7)33.0790(18)99.7480(10)6876.2(6)41.7174.0993512	
Empirical formula Mw Crystal system Space group a (Å) b (Å) c (Å) β (deg) V (Å ³) Z D_c (Mg·m ⁻³) Abs.coeff. (mm ⁻¹) F(000) reflns collected	IFMC-24 $C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Eu_{0.25}Tb_{0.75}$ 1775.79 Monoclinic $P2_1/n$ 15.676(2) 13.5140(17) 33.055(4) 99.803(2) 6900.3(15) 4 1.709 4.056 3510 33958	IFMC-25 $C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Tb$ 1777.53Monoclinic $P2_1/n$ 15.6340(8)13.4910(7)33.0790(18)99.7480(10)6876.2(6)41.7174.099351236569	
Empirical formula Mw Crystal system Space group a (Å) b (Å) c (Å) β (deg) V (Å ³) Z D_c (Mg·m ⁻³) Abs.coeff. (mm ⁻¹) F(000) reflns collected Independent reflns	$\begin{array}{c} \textbf{IFMC-24} \\ \hline C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Eu_{0.25}Tb_{0.75} \\ 1775.79 \\ \hline \textbf{Monoclinic} \\ P2_1/n \\ 15.676(2) \\ 13.5140(17) \\ 33.055(4) \\ 99.803(2) \\ 6900.3(15) \\ 4 \\ 1.709 \\ 4.056 \\ 3510 \\ 33958 \\ 12051 \end{array}$	IFMC-25 $C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Tb$ 1777.53Monoclinic $P2_1/n$ 15.6340(8)13.4910(7)33.0790(18)99.7480(10)6876.2(6)41.7174.09935123656913485	
Empirical formula Mw Crystal system Space group a (Å) b (Å) c (Å) β (deg) V (Å ³) Z D_c (Mg·m ⁻³) Abs.coeff. (mm ⁻¹) F(000) reflns collected Independent reflns θ range (deg)	$\begin{tabular}{ c c c c } \hline IFMC-24 \\ \hline $C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Eu_{0.25}Tb_{0.75}$ \\ \hline 1775.79 \\ \hline $Monoclinic$ \\ $P2_1/n$ \\ \hline $15.676(2)$ \\ \hline $13.5140(17)$ \\ \hline $33.055(4)$ \\ \hline $99.803(2)$ \\ \hline $6900.3(15)$ \\ \hline 4 \\ \hline 1.709 \\ \hline 4.056 \\ \hline 3510 \\ \hline 33958 \\ \hline 12051 \\ \hline $1.25-24.96$ \\ \hline \end{tabular}$	IFMC-25 $C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Tb$ 1777.53 Monoclinic $P2_1/n$ 15.6340(8) 13.4910(7) 33.0790(18) 99.7480(10) 6876.2(6) 4 1.717 4.099 3512 36569 13485 1.25 - 26.00	
Empirical formula Mw Crystal system Space group a (Å) b (Å) c (Å) β (deg) V (Å ³) Z D_c (Mg·m ⁻³) Abs.coeff. (mm ⁻¹) F(000) reflns collected Independent reflns θ range (deg) GOF on F^2	$\begin{tabular}{ c c c c c } \hline IFMC-24 \\ \hline $C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Eu_{0.25}Tb_{0.75} \\ \hline 1775.79 \\ Monoclinic \\ $P2_1/n$ \\ \hline $15.676(2)$ \\ \hline $13.5140(17)$ \\ \hline $33.055(4)$ \\ \hline $99.803(2)$ \\ \hline $6900.3(15)$ \\ \hline 4 \\ \hline 1.709 \\ \hline 4.056 \\ \hline 3510 \\ \hline 3958 \\ \hline 12051 \\ \hline $1.25-24.96$ \\ \hline 1.029 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c } \hline IFMC-25 \\ \hline C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Tb \\ 1777.53 \\ \hline Monoclinic \\ \hline P2_1/n \\ 15.6340(8) \\ 13.4910(7) \\ 33.0790(18) \\ 99.7480(10) \\ 6876.2(6) \\ 4 \\ 1.717 \\ 4.099 \\ 3512 \\ 36569 \\ 13485 \\ 1.25 - 26.00 \\ 1.034 \\ \hline \end{tabular}$	
Empirical formula Mw Crystal system Space group a (Å) b (Å) c (Å) β (deg) V (Å ³) Z D_c (Mg·m ⁻³) Abs.coeff. (mm ⁻¹) F(000) reflns collected Independent reflns θ range (deg) GOF on F^2 R_{int}	IFMC-24 $C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Eu_{0.25}Tb_{0.75}$ 1775.79 Monoclinic $P2_1/n$ 15.676(2) 13.5140(17) 33.055(4) 99.803(2) 6900.3(15) 4 1.709 4.056 3510 33958 12051 1.25 - 24.96 1.029 0.0661	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	
Empirical formula Mw Crystal system Space group a (Å) b (Å) c (Å) β (deg) V (Å ³) Z D_c (Mg·m ⁻³) Abs.coeff. (mm ⁻¹) F(000) reflns collected Independent reflns θ range (deg) GOF on F^2 R_{int} R_1^a	$\begin{tabular}{ c c c c } \hline IFMC-24 \\ \hline $C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Eu_{0.25}Tb_{0.75}$ \\ \hline 1775.79 \\ \hline $Monoclinic$ \\ $P2_1/n$ \\ \hline $15.676(2)$ \\ \hline $13.5140(17)$ \\ \hline $33.055(4)$ \\ $99.803(2)$ \\ \hline $6900.3(15)$ \\ 4 \\ \hline 1.709 \\ \hline 4.056 \\ \hline 3510 \\ \hline 3958 \\ \hline 12051 \\ \hline $1.25-24.96$ \\ \hline 1.029 \\ \hline 0.0661 \\ \hline 0.0557 \\ \hline \end{tabular}$	IFMC-25 $C_{66}H_{59}N_{10}O_{11}Br_4Zn_2Tb$ 1777.53 Monoclinic $P2_1/n$ 15.6340(8) 13.4910(7) 33.0790(18) 99.7480(10) 6876.2(6) 4 1.717 4.099 3512 36569 13485 1.25 - 26.00 1.034 0.0431 0.0491	

Table S1. Crystal data and structure refinements for IFMC-21 to 25

^a
$$R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$$
. ^b $wR_2 = |\Sigma w(|F_o|^2 - |F_c|^2) | / \Sigma |w(F_o|^2)^2 |^{1/2}$.

IFMC-21				
N(1)-Zn(1)	2.122(6)	N(7)-Zn(1)	2.151(6)	
N(3)-Zn(1)	2.097(6)	N(9)-Zn(1)	2.287(6)	
N(5)- $Zn(1)$	2.076(6)	N(10)-Zn(1)	2.285(6)	
Eu(1)-O(6)	2.358(6)	Eu(1)-O(1w)	2.465(5)	
Eu(1)-O(5)	2.353(6)	Eu(1)-O(2)	2.521(6)	
Eu(1)-O(8)	2.377(5)	Eu(1)-O(2w)	2.638(8)	
Eu(1)-O(1)	2.418(6)	Eu(1)-O(8)#3	2.694(5)	
Eu(1)-O(7)	2.422(5)			
IFMC-22				
N(1)-Zn(1)	2.069(6)	N(7)-Zn(1)	2.093(6)	
N(3)-Zn(1)	2.157(6)	N(9)-Zn(1)	2.286(6)	
N(5)-Zn(1)	2.099(6)	N(10)-Zn(1)	2.289(6)	
O(1)-Ln(1)	2.363(5)	O(4)-Ln(1)	2.352(5)	
O(2)-Ln(1)	2.349(6)	O(4)-Ln(1)#1	2.730(5)	
O(1W)-Ln(1)	2.483(6)	O(5)-Ln(1)	2.537(6)	
O(3)-Ln(1)	2.416(5)	O(6)-Ln(1)	2.430(6)	
O(2W)-Ln(1)	2.582(6)			
IFMC-23				
N(1)-Zn(1)	2.082(5)	N(7)-Zn(1)	2.113(5)	
N(3)-Zn(1)	2.156(5)	N(9)-Zn(1)	2.286(5)	
N(5)-Zn(1)	2.089(5)	N(10)-Zn(1)	2.287(4)	
O(1)-Ln(1)	2.338(5)	O(2W)-Ln(1)	2.637(6)	
O(2)-Ln(1)#3	2.350(4)	O(4)-Ln(1)	2.410(4)	
O(1W)-Ln(1)	2.455(4)	O(7)-Ln(1)	2.399(5)	
O(3)-Ln(1)#3	2.350(4)	O(8)-Ln(1)	2.514(4)	
O(3)-Ln(1)	2.698(4)			
IFMC-24				
N(1)-Zn(1)	2.084(6)	N(7)-Zn(1)	2.107(7)	
N(3)-Zn(1)	2.155(7)	N(9)-Zn(1)	2.282(6)	
N(5)-Zn(1)	2.114(7)	N(10)-Zn(1)	2.285(6)	
O(1)-Ln(1)	2.314(7)	O(4)-Ln(1)#1	2.711(6)	
O(2)-Ln(1)	2.344(6)	O(2W)-Ln(1)	2.455(6)	
O(1W)-Ln(1)	2.604(9)	O(5)-Ln(1)	2.402(7)	
O(3)-Ln(1)#3	2.392(6)	O(6)-Ln(1)	2.507(6)	
O(4)-Ln(1)	2.334(6)			

Table S2 The selected bond lengths for compounds IFMC-21 to 25

IFMC-25				
N(1)-Zn(1)	2.078(5)	N(7)-Zn(1)	2.090(5)	
N(3)-Zn(1)	2.154(5)	N(9)-Zn(1)	2.286(5)	
N(5)-Zn(1)	2.122(5)	N(10)-Zn(1)	2.282(4)	
O(1)-Tb(1)	2.319(5)	O(4)-Tb(1)	2.342(4)	
O(2)-Tb(1)#4	2.325(5)	O(4)-Tb(1)#4	2.671(4)	
O(1W)-Tb(1)	2.429(5)	O(5)-Tb(1)#3	2.495(4)	
O(3)-Tb(1)#2	2.383(4)	O(6)-Tb(1)#3	2.377(4)	
O(2W)-Tb(1)	2.676(9)			

Symmetry transformations used to generate equivalent atoms: for IFMC-21: #3 -x+3,-y,-z+1; for IFMC-22: #1 -x+1,-y-1,-z; for IFMC-23: #3 -x,-y,-z+2; for IFMC-24: #1 -x+1,-y+1,-z+1; #3 -x+1,-y,-z+1; for IFMC-25: #2 x,y-1,z; #3 -x,-y+1,-z; #4 -x+1,-y+1,-z.

Table S3 The angles between the benzimidazole rings and the benzene rings

Compounds	Three atoms	Angle/°	Two planes	Dihedral angle/°
IFMC-21	N2-C8-C9	110.123	AB	88.727
	N4-C23-C24	111.306	CD	85.800
	N6-C38-C39	110.533	EF	87.331
	N8-C53-C54	112.769	GH	88.164
IFMC-22	N2-C8-C9	110.300	AB	88.863
	N4-C23-C24	111.582	CD	87.763
	N6-C38-C39	111.176	EF	87.229
	N8-C53-C54	112.238	GH	85.272
IFMC-23	N2-C8-C9	110.629	AB	87.874
	N4-C23-C24	111.617	CD	88.566
	N6-C38-C39	111.329	EF	84.614
	N8-C53-C54	109.697	GH	88.554
IFMC-24	N2-C8-C9	109.456	AB	87.683
	N4-C23-C24	112.798	CD	88.189
	N6-C38-C39	109.795	EF	88.782
	N8-C53-C54	111.867	GH	84.785
IFMC-25	N2-C8-C9	110.658	AB	87.544
	N4-C23-C24	113.009	CD	88.916
	N6-C38-C39	110.822	EF	88.942
	N8-C53-C54	112.091	GH	84.833