Supplementary Information

BiOBr/carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism

Jie Fu, Yanlong Tian, Binbin Chang, Fengna Xi and Xiaoping Dong*

Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, 5 Second

Avenue, Xiasha Higher Education Zone, Hangzhou, 310018, China.

Fax: +86 0571 86843653; Tel: +86 0571 86843228;

E-mail: xpdong@zstu.edu.cn

Details for the preparation of $0.5C_3N_4$ - $0.5TiO_2$ and 0.5BiOBr- $0.5TiO_2$ heterojunctions

The $0.5C_3N_4$ - $0.5TiO_2$ sample was synthesized as follows: 0.6 g of TiO_2 particulates (P25, Degussa) were finely ground with 0.6 g of C_3N_4 , and then this mixture was heated in a crucible at 400 °C for 2 h. After cooling to room temperature, the $0.5C_3N_4$ - $0.5TiO_2$ heterojunction was obtained. For preparing the 0.5BiOBr- $0.5TiO_2$ photocatalyst, 0.6 of TiO_2 (P25) powder and 0.24 g of KBr solid were added to 50 mL of water and ultrasonicated for 30 min to get a uniform suspension. Meanwhile, 0.97 g of Bi(NO_3)_3·5H_2O was dissolved in glacial acetic acid to obtain a clear solution. The resulting solution was added rapidly to the suspension and subsequent stirred for 30 min at room temperature. After aging for 3 h, the resulting precipitate was collected by centrifugation, washed thoroughly with water, and finally dried at 70 °C.

N-deethylation process

Fig. S1 The stepwise *N*-deethylation of RhB during the photocatalytic process.

Four main de-ethylated intermediates and their corresponding characteristic absorption bands are listed here.

Fig. S2 (a) first-order kinetics plot for the visible light induced photodegradation of RhB over various photocatalysts, and (b) their corresponding rate constants (k).

The first-order model, $\ln(C_0/C) = kt$, was applied to fit the experimental data, where C_0 and C are the concentrations of RhB solution at times 0 (after stirring in the dark for 60 min) and t, respectively, and k is the first-order rate constant.

Fig. S3 (a) first-order kinetics plot for the degradation of RhB over various photocatalysts under indoor light irradiation, and (b) their corresponding rate constants (k).

Fig. S4 The decolorization efficiency of RhB using $0.5BiOBr-0.5C_3N_4$ heterojunction after 150 min of indoor light irradiation in each cycle.

The decolorization efficiency was estimated as: η (%) = ($A_0 - A$)/ $A_0 \times 100$ %

Where A_0 is the equilibrium absorbance of RhB solution at 554 nm (after stirring in the dark for 60 min), and A is the absorbance of final solution at 496 nm (after indoor light irradiation for 150 min).

Fig. S5 Sedimentation of TiO_2 nanocatalyst (P25) and 0.5BiOBr-0.5C₃N₄ heterojunction in water.

It is clear that most of $0.5BiOBr-0.5C_3N_4$ particles have settled within 10 min and a nearly complete separation can be realized after 30 min by a simple sedimentation. On the contrary, in the case of P25, almost no changes can be observed.

Fig. S6 Proposed energy levels of BiOBr and C_3N_4 and the scheme for the separation and transport of photogenerated charges at the interface of BiOBr- C_3N_4 heterojunctions.

Due to the well-aligned straddling band-structures of BiOBr-C₃N₄, the excited electrons would be concentrated in the CB of BiOBr, and the holes would be collected by the VB of C_3N_4 . This effectively inhibits the recombination of photogenerated electrons-holes pairs.

Fig. S7 Proposed energy levels of BiOBr and C_3N_4 compare with the standard redox potentials of $\cdot OH/OH^2$ and O_2/O_2^{-2} .

Obviously, the excited electrons in the CB potential of BiOBr are not negative enough to reduce the O_2 molecule, and holes in the VB of C_3N_4 are not positive to oxidize OH⁻. Thus, both the photogenerated electrons in BiOBr and holes in C_3N_4 cannot bring any hydroxyl radicals to the photocatalytic system.

Fig. S8 Proposed routes for the transfer of excited electrons from RhB.

Since the CB of C_3N_4 is more negative than the LUMO of RhB, the excited electrons cannot transfer to the CB of C_3N_4 . Moreover, even though a successful transfer of electrons from the LUMO of RhB to the CB of BiOBr would take place, these electrons cannot further reduce O_2 to form O_2^- species, as described in Figure S7. As a result, these transferred electrons would return to the HOMO of RhB, as marked by the dotted line (black). These exclude the possibility that the dye-sensitised photocatalysis would contribute to the degradation of RhB in the present BiOBr- C_3N_4 system.