Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir-Blodgett assembly

Qingbin ZHENG, Biao ZHANG, Xiuyi LIN, Xi SHEN, Nariman YOUSEFI, Zhen-Dong HUANG, Zhigang LI and Jang-Kyo KIM*

Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Tel: +852-23587207, Fax: +852-23581543. E-mail: mejkkim@ust.hk

Supplementary Materials

Fig. S1 Process flow for sorting as-prepared GO into four different groups of uniform sizes: ultralarge GO (UL-GO), very large GO (VL-GO), large GO (L-GO) and small GO (S-GO).

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

4.0 bilayers, t=56.4 nm

Figure S2. Thickness of GO/SWCNT hybrid thin films as a function of number of bilayers measured by AFM.

TCF type	Fabrication method	Sheet resistanc e (Ω/sq)	Transmittanc e (%)	$\sigma_{_{DC}}/\sigma_{_{OP}}$	Reference
rGO/CN T hybrid films	L-B assembly and high temperatur e annealing	257.4	82	6.88	Current result for hybrid films
		183.5	77	7.48	
	Electrostatic self-assembl y and high temperature annealing	1.51 x10 ⁵	93	0.03	Kim et al. ¹ Langmuir, 2009 , <i>25</i> , 11302
	Spin coating and high temperature annealing	631	81.3	2.74	Huang et al. ² ACS Nano, 2011 , 5, 6262
	Electrostatic self-assembl y and high temperature annealing	8000	81.0	0.21	Hong et al. ³ ACS Nano 2010 , 4, 3861
Thermall y reduced GO films	L-B assembly	531.7	80	3.07	Our previous study (Without additional chemical
		349.7	74	3.28	Zheng et al. ⁴ <i>ACS</i> <i>Nano</i> 2011 , <i>4</i> , 6039
	L-B assembly	4.0x10 ⁶	95	0.0018	Kim <i>et al.</i> ⁵ Adv. Mater. 2010, 22, 1954
	Transfer printing	1598	82	1.09	Zheng <i>et al.</i> ⁶ Carbon 2011, 49,

Table S1. Comparison of optoelectrical properties of graphene-based thin films.

					2905
	Transfer printing	6848	82	0.27	Wang <i>et al.</i> ⁷ Carbon 2010,48,1815-182 3
	Spin coating	1000	80	1.60	Becerril <i>et al.</i> ⁸ ACS Nano 2008, 2,463
	Spin coating	800	82	2.26	Wu <i>et al.</i> ⁹ ACS Nano, 2010, 4, 43
	Spin coating	5000	80	0.32	Wu <i>et al</i> . ¹⁰ APL 2008, 92, 263302
	Spin coating	1750	70	0.55	Liang <i>et al.</i> ¹¹ Nanotechnology, 2009, 20, 434007
	Dip coating	1800	70	0.54	Wang <i>et al.</i> ¹² Nano Lett. 2008, 8,323
	Dip coating	8000	70	0.12	Zhao <i>et al</i> . ¹³ Electrochimica Acta, 2009, 55, 491
Graphene	L-B assembly of expandable Graphite exfoliated with DMF	1.5x10 ⁵	92	0.03	Li <i>et al.</i> ¹⁴ Nature Nanotechnol. 2008, 3, 538
	Spray coating of graphite exfoliated with DMF	5000	90	0.697	Blake <i>et al.</i> ¹⁵ Nano Lett. 2008, 8,1704

	CVD on Ni substrate	1000	90	3.48	Reina <i>et al</i> . ¹⁶ Nano Lett. 2009,9,30
	CVD on Ni substrate	280	80	5.70	Kim <i>et al.</i> ¹⁷ Nature 2009, 457, 706
	CVD on Ni substrate	1350	91	2.89	Wang <i>et al</i> . ¹⁸ APL, 2009, 95,063302
	CVD on Cu substrate	350	90	9.96	Li <i>et al</i> . ¹⁹ Nano Lett. 2009, 9,4359
	CVD on Cu substrate	200	85	11.13	Cai <i>et al</i> . ²⁰ APL 2009, 95, 123115
	CVD on Cu substrate	125	97.4	113.7	Bae et al. ²¹ <i>Nat.</i> <i>Nanotechnol.</i> 2010 , <i>5</i> , 574
Graphene Oxide	Spin coating	1011	90	3.5×10 ⁻⁸	Becerril <i>et al.</i> ⁸ ACS Nano 2008, 2,463

References

- 1 Y. K. Kim and D. H. Min, *Langmuir*, 2009, 25, 11302-11306.
- 2 J. H. Huang, J. H. Fang, C. C. Liu and C. W. Chu, ACS Nano, 2011, 5, 6262-6271.
- 3 T. K. Hong, D. W. Lee, H. J. Choi, H. S. Shin and B. S. Kim, ACS Nano, 2010, 4, 3861-3868.
- 4 Q. B. Zheng, W. H. Ip, X. Y. Lin, N. Yousefi, K. K. Yeung, Z. G. Li and J. K. Kim, *ACS Nano*, 2011, **4**, 6039-6051.
- 5 F. Kim, L. J. Cote and J. X. Huang, Adv. Mater., 2010, 22, 1954-1958.
- 6 Q. B. Zheng, M. M. Gudarzi, S. J. Wang, Y. Geng, Z. G. Li and J. K. Kim, *Carbon*, 2011, **49**, 2905-2916.
- 7 S. J. Wang, Y. Geng, Q. B. Zheng and J. K. Kim, Carbon, 2010, 48, 1815-1823.
- 8 H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao and Y. Chen, *ACS Nano*, 2008, **2**, 463-470.
- 9 J. B. Wu, M. Agrawal, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen and P. Peumans, *ACS Nano*, 2010, **4**, 43-48.

- 10 J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen and P. Peumans, *Appl. Phys. Lett.*, 2008, **92**, 263302.
- 11 Y. Y. Liang, J. Frisch, L. J. Zhi, H. Norouzi-Arasi, X. L. Feng, J. P. Rabe, N. Koch and K. Mullen, *Nanotechnology*, 2009, **20**, 434007.
- 12 X. Wang, L. J. Zhi and K. Mullen, Nano Lett., 2008, 8, 323-327.
- 13 L. Zhao, L. Zhao, Y. X. Xu, T. F. Qiu, L. J. Zhi and G. Q. Shi, *Electrochim. Acta*, 2009, **55**, 491-497.
- 14 X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. G. Wang and H. J. Dai, *Nat. Nanotechnol.*, 2008, **3**, 538-542.
- 15 P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim and K. S. Novoselov, *Nano Lett.*, 2008, 8, 1704-1708.
- 16 A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, *Nano Lett.*, 2009, 9, 30-35.
- 17 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, *Nature*, 2009, **457**, 706-710.
- 18 Y. Wang, X. H. Chen, Y. L. Zhong, F. R. Zhu and K. P. Loh, *Appl. Phys. Lett.*, 2009, 95, 063302.
- 19 X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. Colombo and R. S. Ruoff, *Nano Lett.*, 2009, 9, 4359-4363.
- 20 W. W. Cai, Y. W. Zhu, X. S. Li, R. D. Piner and R. S. Ruoff, *Appl. Phys. Lett.*, 2009, **95**, 123115.
- 21 S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong and S. Iijima, *Nat. Nanotechnol.*, 2010, 5, 574-578.