Supplementary Information

Microcalorimetric Insight into the Analysis of the Reactive Adsorption of Ammonia on Cu-MOF and its Composite with Graphite Oxide

Camille Petit,^{*a†*} *Sabine Wrabetz*,^{*b*} *and Teresa J. Bandosz*^{*a*}*

^a Department of Chemistry, The City College of New York, 160 Convent Avenue, New York, NY 10012 (USA)

^b Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)

Figures

Figure S1. Selected raw data of the equilibrium pressure of NH_3 for an individual adsorption step (grey), with the corresponding integral heat signal (black) for HKUST-1. The coverage is about 1.0 mmol.g⁻¹.

Figure S2. Selected raw data of the equilibrium pressure of NH_3 for an individual adsorption step (grey), with the corresponding integral heat signal (black) for HKUST-1. The coverage range is above 4.7 mmol.g⁻¹. The bumps in the integral heat signal indicate secondary processes.

Figure S3. Selected raw data of the equilibrium pressure of NH_3 for an individual adsorption step (grey), with the corresponding integral heat signal (black) for HKUST-1/GO. The coverage is about 0.7 mmol.g⁻¹. The bump in the integral heat signal indicates secondary processes.

Figure S4. Selected raw data of the equilibrium pressure of NH_3 for an individual adsorption step (grey), with the corresponding integral heat signal (black) for HKUST-1/GO. The coverage range is about 4.0 to 5.0 mmol.g⁻¹. The bumps in the integral heat signal indicate secondary processes.