Supporting Information for

Preparation of supported hydrodesulfurization catalysts with enhanced performance using Mo-based inorganic-organic hybrid nanocrystals as a superior precursor

Wei Han^{a,b}, Pei Yuan^{a*}, Yu Fan^a, Gang Shi^b, Haiyan Liu^{a,b}, Danjiang Bai^c, Xiaojun Bao^{b*}
^aState Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Rd., Changping, Beijing 102249, P. R. China
^bThe Key Laboratory of Catalysis, China National Petroleum Corporation, China University of Petroleum, No. 18 Fuxue Rd., Changping, Beijing 102249, P. R. China
^c Jinao (Hubei) Science & Technology Chemical Industry Co., Ltd., Zhanghua Beilu, Qianjiang City, Hubei 433132, P. R. China

^{*} Corresponding authors. E-mail: yuanpei@cup.edu.cn, baoxj@cup.edu.cn; Tel.: +86(0) 10 89732338, +86(0) 10 89734836; Fax: +86(0) 10 89734979.

Fig. S1. (a) XRD patterns of Mo/ γ -Al₂O₃ catalysts with different MoO₃ loadings prepared via the HNC-assisted method and (b) the change of the surface areas of the catalysts prepared via the different methods as a function of MoO₃ loading. 1, the HNC-assisted method; 2, the conventional impregnation method. From Fig. S1a, we can conclude that the HNC-assisted method not only facilitates the dispersion of MoO₃ on γ -Al₂O₃ but also increases MoO₃ loading, endowing the resulting catalysts with a plenty of potential active sites to reactants. From Fig. S1b, we can clearly see that HA-CATs prepared via the HNC-assisted method have much higher surface areas than IM-CATs with the MoO₃ loading ranging from 0 to 30 wt.%. Meanwhile, with the increasing MoO₃ loading in HA-CATs, the decreases in the surface areas of the resulting catalysts prepared via the HNC-assisted method and MoO₃ loading the resulting catalysts are very small, distinctly different from those of IM-CATs, indicating that the catalysts prepared via the HNC-assisted method possess higher dispersion, more open pore channels and higher accessibility to reactants.

Fig. S2. HRTEM images of the catalysts Ni-HA-CAT (a) and Ni-IM-CAT (b) after 300 h hydrotreating reaction using the real coking diesel as feedstock; average length and average stacking number layer of MoS_2 (c) on the two sulfided catalysts after 300 h hydrotreating reaction. Compared with the conventional bimetallic catalyst Ni-IM-CAT, the HNC-derived catalyst Ni-HA-CAT after reaction still kept much shorter slabs, higher stacking layer numbers and thereby possessed better dispersion of MoS_2 nanoparticles and more exposed active sites to reactant molecules.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2012

Fig. S3. The DBT HDS activity of Ni-HA-CAT (a) and Ni-IM-CAT (b) at the LHSVs of 5, 10, 15, 20, 25 h^{-1} . Compared with the conventional bimetallic catalyst Ni-IM-CAT, the HNC-derived catalyst Ni-HA-CAT possesses much better stability in its catalytic activity with the increasing LHSV up to 25 h^{-1} .