Supporting Information

Near-infrared photoluminescence from molecular crystals containing tellurium

Hong-Tao Sun,*^{ab} Yoshio Sakka,^c Naoto Shirahata,^{c,d} Minoru Fujii, ^e and Tetsu Yonezawa^a

^a Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13,

Nishi 8, Kita-ku, Sapporo 060-8628, Japan. Fax: +81-11-706-7881; E-mail: timothyhsun@gmail.com

^b International Center for Young Scientists (ICYS), National Institute for Material Sciences (NIMS), 1-2-1 Sengen, Tsukuba-city, Ibaraki 305-0047, Japan.

^c Advanced Ceramics Group, Materials Processing Unit, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-city, Ibaraki 305-0047, Japan

^d PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan

^e Department of Electrical and Electronic Engineering, Kobe University, Kobe 657-8501, Japan

Fig. S1 PL spectrum $Te_4(Ga_2Cl_7)_2$ sample under the excitation of 852 nm.

Fig. S2 PL spectrum $Te_4(Al_2Cl_7)_2$ sample under the excitation of 852 nm.

Table S1. The calculated Singlet-Singlet/Triplet excitation energies of Te₄. Spin-restricted density functional theory (DFT) was employed to determine energies and compositions of excited states of this unit, using the Hartree–Fock method. The Slater-type all-electron basis set utilized in the DFT calculation is of triple- ζ -polarized (TZP) quality. The absorption bands were calculated through a Davidson method, and the absorption spectra were fitted with a Gaussian function with a width at half-maximum of 50 nm. The ADF numerical integration parameter was set to 5.0. Scalar relativistic effect was taken into account for the calculation.

No	Wavelength (nm)	Oscillator strength
1	2299	0
2	2195	0
3	1060	1.01E-09
4	1041	6.83E-11
5	747	0
6	551	0
7	487	3.23E-09
8	455	0
9	453	0
10	432	0
11	397	1.05E-02
12	387	0
13	380	3.87E-09
14	330	3.67E-06
15	327	0
16	305	4.28E-09
17	303	0
18	288	2.10E-08
19	267	4.14E-05
20	257	3.87E-08

Table S2. The calculated spin-unrestricted excitation energies of Te_4^{1+} . Spin-unrestricted density functional theory (DFT) was employed to determine energies and compositions of excited states of this unit, using the hybrid Becke three-parameter Lee–Yang–Parr (B3LYP) functional. The Slater-type all-electron basis set utilized in the DFT calculation is of triple- ζ -polarized (TZP) quality. The absorption bands were calculated through a Davidson method, and the absorption spectra were fitted with a Gaussian function with a width at half-maximum of 50 nm. The ADF numerical integration parameter was set to 5.0. Scalar relativistic effect was taken into account for the calculation.

No	Wavelength (nm)	Oscillator strength
1	2349	1.49E-09
2	2272	2.25E-09
3	673	7.64E-09
4	656	2.51E-08
5	641	2.49E-04
6	631	3.78E-05
7	573	4.02E-02
8	572	4.06E-02
9	526	4.50E-08
10	508	1.78E-07

Table S3. The calculated spin-unrestricted excitation energies of Te_4^{3+} . Spin-unrestricted density functional theory (DFT) was employed to determine energies and compositions of excited states of this unit, using the hybrid Becke three-parameter Lee–Yang–Parr (B3LYP) functional. The Slater-type all-electron basis set utilized in the DFT calculation is of triple- ζ -polarized (TZP) quality. The absorption bands were calculated through a Davidson method, and the absorption spectra were fitted with a Gaussian function with a width at half-maximum of 50 nm. The ADF numerical integration parameter was set to 5.0. Scalar relativistic effect was taken into account for the calculation.

No	Wavelength (nm)	Oscillator strength
1	7771	0
2	1314	2.75E-03
3	792	0
4	774	1.50E-03
5	675	3.02E-03
6	645	1.17E-04
7	642	0
8	518	7.37E-04
9	518	0
10	448	5.63E-02