Supporting Information

Title: Tunable luminescence and energy transfer properties in KCaGd(PO₄)₂: Ln^{3+}/Mn^{2+} (Ln = Tb, Dy, Eu, Tm; Ce, Tb/Dy) phosphors with high quantum efficiencies

5

Author(s): Dongling Geng, ^{a,b} Mengmeng Shang, ^{a,b} Dongmei Yang, ^{a,b} Yang Zhang, ^{a,b} Ziyong Cheng ^a and Jun Lin ^{a,*}

Fig. S1 PL excitation and emission spectra (A and B) along with the decay curves and lifetimes (C and 20 D) of Tb^{3+}/Ce^{3+} in KCG and KCY host.

Fig. S2 The excitation spectra of KCG: $Eu^{3+}/Tb^{3+}/Tm^{3+}$ phosphors monitoring with the characteristic emission of $Eu^{3+}/Tb^{3+}/Tm^{3+}$.

Fig. S3 The emission spectra of KCG: 0.04Ce^{3+} sample ($\lambda_{ex} = 280 \text{ nm}$) and the deconvoluted emission spectrum of the emission band as a sum of two Gaussian bands. The inset shows the PL intensity of KCG: $x\text{Ce}^{3+}$ samples as a function of Ce³⁺ doping concentration under the excitation of 280 nm UV.

Fig. S4 The variation of PL spectra of KCG: $0.04Ce^{3+}$, yTb^{3+} samples with changing Tb^{3+} and fixed Ce^{3+} .

Fig. S5 Energy transfer efficiency from Ce^{3+} to Tb^{3+} in KCG: Ce^{3+} , yTb^{3+} samples ($\lambda_{ex} = 280$ nm).

Fig. S6 Dependence of I_{so}/I_s of Ce³⁺ on (A) C_{Ce+Tb}^{6/3} (B) C_{Ce+Tb}^{8/3} (C) C_{Ce+Tb}^{10/3}.

Fig. S7 The CL spectra of KCG: yTb^{3+} with different Tb^{3+} ions concentrations.

Fig. S8 CIE chromaticity diagram of standard FED phosphors and KCG: $0.12Mn^{2+}$ sample. R, G, B and M represent the CIE Chromaticity coordinates of Y₂O₂S:Eu³⁺ (P22R), ZnS:Cu:Au:Al (P22G), ZnS:Ag:Cl (P22B) and KCG: $0.12Mn^{2+}$ phosphors, respectively.

Table S1 Absolute quantum yields and CIE chromaticity coordinates (x, y) of KCG: $0.04Ce^{3+}$, zDy^{3+} and KCG: $0.04Ce^{3+}$, nMn^{2+} samples under the excitation of 280 nm UV.

KCG: $0.04Ce^{3+}$, zDy^{3+}			KCG: 0.04 Ce ³⁺ , n Mn ²⁺		
z	QYs 330~700 nm	CIE chromaticity coordinates (x, y)	п	QYs 330~700 nm	CIE chromaticity coordinates (x, y)
0.01	0.769	(0.247, 0.166)	0.05	0.697	(0.337, 0.437)
0.02	0.728	(0.271, 0.213)	0.10	0.748	(0.350, 0.464)
0.04	0.672	(0.279, 0.238)	0.15	0.781	(0.359, 0.484)
0.06	0.574	(0.283, 0.247)	0.20	0.797	(0.363, 0.489)
0.08	0.485	(0.295, 0.263)	0.25	0.802	(0.389, 0.518)
0.1	0.411	(0.298, 0.280)	0.30	0.777	(0.393, 0.526)
0.15	0.307	(0.305, 0.291)	0.40	0.737	(0.405, 0.532)