## **Electronic Supplementary Information (ESI)**

## Alumina-Coated Silicon-Based Nanowire Arrays

## for High Quality Li-Ion Battery Anodes

Hung Tran Nguyen<sup>1,2</sup>, Mihai Robert Zamfir<sup>1</sup>, Loc Dinh Duong<sup>1</sup>, Young Hee Lee<sup>1</sup>,

Paolo Bondavalli<sup>3</sup> and Didier Pribat<sup>1</sup>\*

<sup>1</sup> Department of Energy Science, Sungkyunkwan University, Suwon, 440-746, Republic of Korea.

<sup>2</sup>Institute of Chemistry & Materials Science, 17 Hoang Sam, Ha Noi, Viet Nam.

<sup>3</sup> Nanocarb Laboratory, Thales Research & Technology, Palaiseau 91767, France.

(\*) didier53@skku.edu



Figure S1. Electron microscope pictures showing details of the Al<sub>2</sub>O<sub>3</sub>-coated core-shell NiSi<sub>x</sub>-aSi anode before testing. (a): SEM picture where the arrows point some of the interconnections between NWs. (b): Low magnification SEM view of a Ni foam branch covered with core-shell NW structures. (c): detail of one NW. (d): TEM picture of a core NiSi NW showing its high crystalline quality. Note the ~ 5 nm-thick amorphous layer at the surface of the NW. The inset is an electron diffraction pattern showing no trace of twinning or any other crystal





Resistivity: 87 μΩ cm

Figure S2. Electrical characterization of the NiSi<sub>x</sub> NWs. Two different NiSi<sub>x</sub> NWs are shown above and their average resistivity, measured by a 4-probe technique is 87  $\mu\Omega$ .cm. For the calculation of the resistivity, we have removed 10 nm from the SEM-measured diameter of the NWs. This is to take into account the native oxide/damaged surface layer than can be seen on the TEM picture of Figure S1d.



Figure S3. Cyclic voltammograms (scan rate: 0.05 mV/s) of bare NiSi<sub>x</sub> anodes (green and blue for respectively the first and second cycles), compared with the first cycle of Al<sub>2</sub>O<sub>3</sub>-coated NiSi<sub>x</sub> NWs (brown). Note the smaller magnitude of the current for the Al<sub>2</sub>O<sub>3</sub>-coated NiSi<sub>x</sub> NWs when the voltage approaches zero, an indication of the efficiency of the Al<sub>2</sub>O<sub>3</sub> layer to limit electrolyte decomposition.