Electronic Supplementary Information

A Facile Route to $(ZnS)_x(CuInS_2)_{1-x}$ Hierarchical Microspheres with Excellent Water-splitting Ability

Yuhan Lin^a, Fang Zhang *^b, Daocheng Pan *^a

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China. Fax: 86 431 85685653; Tel: 86 431 85262941; E-mail: pan@ciac.jl.cn

^b The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China. Fax: 86 21 64322642; Tel: 86 21 64322272; E-mail: zhangfang@shnu.edu.cn

 \dagger Electronic Supplementary Information (ESI) available: Detail information of $(ZnS)_x(CuInS_2)_{1-x}$ samples; figure of TG profile, and SEM images, and EDX spectra. See DOI: 10.1039/b000000x/

Nominated	Reaction	Zn% ^a	Cu% ^a	In% ^a	S% ^a	Bandgap	Hydrogen
ZnS-CuInS ₂	time (h)					(eV)	evolving rate
molar ratio							(µmol h ⁻¹ g ⁻¹)
2-1	6	23.22	10.79	11.23	54.66	2.35	29.78
4-1	6	33.55	8.68	7.88	49.90	2.58	19.46
8-1	12	35.13	4.87	4.87	55.14	2.62	52.14
12-1	12	38.20	3.47	3.54	54.79	2.78	90.72
50-1	14	49.81	1.27	1.07	48.15	3.32	37.16
90-1	16	47.31	0.74	0.56	51.40	3.47	15.02

Table S1 Detail information of $(ZnS)_x(CuInS_2)_{1-x}$ samples.

^a Calculated from EDX results.

Fig. S1 The calculated lattice parameters *c* of a series of $(\text{ZnS})_x(\text{CuInS}_2)_{1-x}$ samples as a function of the ZnS mole fraction. Note that the *c* was calculated by a function of $c = \sqrt{3}d_{111}$.

Fig. S2 Thermogravimetric (TG) profile of $(ZnS)_{8/9}(CuInS_2)_{1/9}$ sample. Experiment was performed on TGA/DSC of Mettler.

Fig. S3 XRD patterns (left) and SEM images (right) of $(ZnS)_{4/5}(CuInS_2)_{1/5}$ microspheres before (a) and after (b) calcination at 723 K under N₂ atmosphere.

Fig. S4 $(ZnS)_{4/5}(CuInS_2)_{1/5}$ hierarchical microspheres synthesized with ethanolamine (EA), 1-butylamine (1-BA), and diglycolamine (TGA) individually.

Fig. S5 EDX spectra of a series of $(ZnS)_x(CuInS_2)_{1-x}$ samples.