A Photocleavable Linker for the Chemoselective Functionalization of Biomaterials

Liz O'Donovan and Paul A. De Bank*

Department of Pharmacy and Pharmacology and Centre for Regenerative Medicine, University of Bath, Bath BA2 7AY, UK.
*Email: p.debank@bath.ac.uk; Fax: +44 (0) 1225 384017; Tel: +44 (0) 1225384017

General Experimental

All reagents were purchased from Sigma-Aldrich (Dorset, U.K.) and used without further purification unless otherwise specified. All reactions were carried out in freshly dried and distilled solvents under a dry nitrogen atmosphere apart from those involving aqueous solutions. NMR spectra were recorded on Bruker Avance III 400 MHz or 500 MHz NMR spectrometers. Data are expressed in parts per million downfield from SiMe_{4} as an internal standard or relative to CHCl_{3}. NMR assignments were supported by ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NMR 2D spectra and DEPT for compound 4-7 and caged aldehyde 1'. J vales are given in Hz. IR spectra were measured on a Perkin Elmer Spectrum RXI FT-IR spectrophotometer and reported as cm^{-1}. Mass spectra were obtained using Bruker micrOTOF spectrometers in electrospray positive ion mode.

Reaction Scheme

b)

c)

6
a) $\mathrm{Bi}(\mathrm{OTf})_{3}$, toluene, $80{ }^{\circ} \mathrm{C}$; b) $\mathrm{NEt}_{4} \mathrm{CN}$, MeCN, reflux; c) KOH , 2-methoxyethanol, reflux; d) N hydroxysuccinimide, N, N '-diisopropylcarbodiimide, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; e) $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$ (8), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ rt.

Synthesis

4-(Dimethylamino)-2-(hydroxydiphenylmethyl)phenol (2) was prepared according to the synthetic route described by Wang et al. ${ }^{1}$

4-Bromobutanal (3)

DMSO ($0.50 \mathrm{~mL}, 6.44 \mathrm{mmol}$) in dichloromethane (4 mL) was added to oxalyl chloride (0.41 mL , 4.57 $\mathrm{mmol})$ in dichloromethane $(4 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 5 minutes a solution of 4-bromo-1-butanol ($0.68 \mathrm{~g}, 4.44$ $\mathrm{mmol})$ in dichloromethane (8 mL) was added to the mixture and after 10 minutes, $N, N-$ diisopropylethylamine ($2.50 \mathrm{~mL}, 14.33 \mathrm{mmol}$) was added. The solution was stirred at $-65^{\circ} \mathrm{C}$ for 15 minutes and for an additional 15 minutes at room temperature, poured into 10% citric acid and extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$). The organic layer was washed with saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and dried over MgSO_{4}. The solution was evaporated to dryness and the residue purified by silica column chromatography ($1: 4$ dichloromethane $/$ hexane) to yield compound $3\left(0.54 \mathrm{~g}, 80 \%\right.$) as a colourless oil; $R_{\mathrm{f}} 0.45$ (1:1 dichloromethane/hexane); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 2.15-2.22 (2 H , quintet, CH_{2}), 2.65-2.68 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right)$, 3.44-3.47 ($2 \mathrm{H}, \mathrm{t}, J=6.0, \mathrm{CH}_{2}$), $9.81(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$. Spectroscopic data are consistent with those described in the literature. ${ }^{2}$

2-(3-Bromopropyl)-N,N-dimethyl-4,4-diphenyl-4H-benzo[d][1,3]dioxin-6-amine (4)

Photolabile protecting group $2(0.70 \mathrm{~g}, 2.20 \mathrm{mmol})$, 4-bromobutanal 3 ($1.00 \mathrm{~g}, 6.60 \mathrm{mmol})$, Bismuth (III) trifluromethanesulfonate ($0.015 \mathrm{~g}, 0.023 \mathrm{mmol}$), in toluene (8 mL) were heated at $80^{\circ} \mathrm{C}$ under nitrogen for 72 hr . The reaction was quenched with saturated aqueous sodium hydrogen carbonate solution (10 ml) and extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The organic extracts were combined and dried $\left(\mathrm{MgSO}_{4}\right)$. The solution was evaporated to dryness and the residue purified by silica column chromatography ($0.5: 9.5 \mathrm{EtOAc} / \mathrm{hexane}$) to yield compound 4 as a colourless oil $(0.80 \mathrm{~g}, 81 \%) ; R_{\mathrm{f}} 0.48$ ($0.5: 9.5 \mathrm{EtOAc} / \mathrm{hexane}$); $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 1.93-2.10 ($\left.4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right)$, $2.73\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 3.37-3.40\left(2 \mathrm{H}, \mathrm{t}, J_{3} 6.7, \mathrm{CH}_{2} \mathrm{Br}\right), 4.97-$ $4.99\left(1 \mathrm{H}, \mathrm{t}, J_{3} 4.7, \mathrm{CH}\right), 6.22-6.23\left(1 \mathrm{H}, \mathrm{d}, J_{5} 2.6\right.$, Ar-H), $6.68-6.70\left(1 \mathrm{H}, \mathrm{dd}, J_{3} 8.9, J_{5} 2.6\right.$, Ar-H), 6.81-6.84 ($\left.1 \mathrm{H}, \mathrm{d}, J_{3} 8.9, \mathrm{Ar}-\mathrm{H}\right), 7.21-7.48(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 26.8\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{2}\right), 33.4$ $\left(\mathrm{CH}_{2}\right), 41.5\left(2 \mathrm{x} \mathrm{CH}_{3}\right), 84.3(\mathrm{C}), 93.9(\mathrm{CH}), 114.5(\mathrm{Ar}-\mathrm{CH}), 114.7(\mathrm{Ar}-\mathrm{CH}), 117.2(\mathrm{Ar}-\mathrm{CH}), 125.2,127.3$, 127.7, 127.8, 127.9, 128.0, 129.1 (all Ph-CH), 144.3, 144.5, 144.6, 146.0 (ipso-C); $v_{\max } / \mathrm{cm}^{-1} 3468,3417$, 1650, 1501, 1439; HRMS (ESI): found $\mathrm{MH}^{+}, 452.1208\left(\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{BrNO}_{2}\right.$ requires 452.1225); m/z (ES1) 452 $\left(\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{BrNO}_{2}, 45 \%\right)$, 302 (100), 289 (8).

4-(6-(Dimethylamino)-4,4-diphenyl-4H-benzo[d][1,3]dioxin-2-yl)butanenitrile (5)
Bromide $4(0.130 \mathrm{~g}, 0.29 \mathrm{mmol})$ and tetraethylammonium cyanide $\left(\mathrm{NEt}_{4} \mathrm{CN}\right)(0.067 \mathrm{~g}, 0.426 \mathrm{mmol})$ were dissolved in $\mathrm{MeCN}(15 \mathrm{~mL})$. The solution was heated at reflux for 5.5 hr , cooled and reduced to dryness. The resultant orange residue was purified by silica column chromatography ($2: 8 \mathrm{EtOAc} /$ hexane) to yield compound 5 as a colourless oil ($0.11 \mathrm{~g}, 96 \%$) $R_{\mathrm{f}} 0.5$ (2:3 EtOAc/hexane); δ_{H} ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) 1.81-2.00 ($\left.4 \mathrm{H}, \mathrm{m}\left(\mathrm{CH}_{2}\right)_{2}\right)$, 2.34-2.37 ($2 \mathrm{H}, \mathrm{t}, J_{3} 7.0, \mathrm{CH}_{2} \mathrm{CN}$), $2.71\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 4.96-4.98\left(1 \mathrm{H}, \mathrm{t}, J_{3} 4.5\right.$, $\mathrm{CH}), ~ 6.18-6.19\left(1 \mathrm{H}, \mathrm{d}, J_{5} 3.0, \mathrm{Ph}-\mathrm{H}\right), 6.64-6.67\left(1 \mathrm{H}, \mathrm{dd}, J_{3} 9.0, J_{5} 3.0, \mathrm{Ph}-\mathrm{H}\right), 6.79-6.82\left(1 \mathrm{H}, \mathrm{d}, J_{3} 9.0\right.$, PhH), 7.22-7.44 (10 H, m Ph-H); $\delta_{\mathrm{C}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 17.4\left(\mathrm{CH}_{2}\right), 20.1\left(\mathrm{CH}_{2}\right), 33.5\left(\mathrm{CH}_{2}\right), 41.8(2 \mathrm{x}$ $\left.\mathrm{CH}_{3}\right), 85.0(\mathrm{CH}), 94.2(\mathrm{C}), 114.9(\mathrm{Ar}-\mathrm{CH}), 117.7(\mathrm{Ar}-\mathrm{CH}), 119.0(\mathrm{C}), 125.7,127.9,128.3,128.5,128.5$, 128.7, 144.7, 144.8, 145.3 (all Ar-CH); $v_{\max } / \mathrm{cm}^{-1} 2923,1623,1516,1446,1238$; HRMS (ESI): found MH^{+}, $399.2076\left(\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$ requires 399.2073); m/z (ES1) $399\left(\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}, 73 \%\right)$, 302 (100), 288 (55).

4-(6-(Dimethylamino)-4,4-diphenyl-4H-benzo[d][1,3]dioxin-2-yl)butanoic acid (6)

Nitrile $5(0.30 \mathrm{~g}, 0.75 \mathrm{mmol})$, was dissolved in a saturated solution of KOH in 2-methoxy methanol (2 mL). The solution was heated at reflux for 18 hr , cooled and $\mathrm{HCl}(2 \mathrm{M})$ was added dropwise until the pH was adjusted to 2 . The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$, the organic extracts were combined, dried over MgSO_{4} and reduced to dryness to yield compound 6 as a brown oil $(0.28 \mathrm{~g}, 89 \%) ; R_{\mathrm{f}} 0.2(1: 1$ $\mathrm{EtOAc} /$ hexane $) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.78-1.86\left(4 \mathrm{H}, \mathrm{m}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.17-2.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.71$ $\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} \mathrm{CH}_{3}\right), 4.95-4.97\left(1 \mathrm{H}, \mathrm{t}, J_{3} 4.6, \mathrm{CH}\right), 5.35-5.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.19-6.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ph}-\mathrm{H}), 6.61-$ 6.68 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}), 6.75-6.82(1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}), 7.20-7.40(10 \mathrm{H}, \mathrm{m} \mathrm{Ph}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 19.5$ $\left(\mathrm{CH}_{2}\right), 33.4\left(\mathrm{CH}_{2}\right), 35.3\left(\mathrm{CH}_{2}\right), 41.6\left(2 \mathrm{x} \mathrm{CH}_{3}\right), 84.4(\mathrm{C}), 94.4(\mathrm{CH}), 114.9(\mathrm{Ar}-\mathrm{CH}), 117.2(\mathrm{Ar}-\mathrm{CH}), 125.4$ (C), 127.3, 127.7, 127.8, 127.9, 128.0, 129.3, 144.3, 146.1, $174.9(\mathrm{C}=\mathrm{O}) ; v_{\max } / \mathrm{cm}^{-1} 3074,1706,1565,1367$; HRMS (ESI): found $\mathrm{MH}^{+}, 418.2013\left(\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{4}\right.$ requires 418.2018); m/z (ES1) $418\left(\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{4}, 100 \%\right)$, 302 (67.9), 217 (37).

${ }^{1} \mathrm{H}$ NMR in CDCl_{3}

2,5-Dioxopyrrolidin-1-yl 4-(6-(dimethylamino)-4,4-diphenyl-4H-benzo[d][1,3]dioxin-2-yl) butanoate (7) To a solution of acid $6(0.20 \mathrm{~g}, 0.479 \mathrm{mmol})$ and N -hydroxysuccinimide (0.066 g 0.574 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added N, N '-diisopropylcarbodiimide ($0.073 \mathrm{~g}, 0.575 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL). The solution was stirred for 72 hr at room temperature and quenched with brine. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, the organic layers were combined and dried over MgSO_{4}. The solution was evaporated to dryness and the residue purified by silica column chromatography ($1: 1 \mathrm{EtOAc} /$ hexane) to yield compound 7 as a yellow oil ($0.234 \mathrm{~g}, 95 \%$); $R_{\mathrm{f}} 0.60$ ($1: 1 \mathrm{EtOAc} /$ hexane); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}^{2}\right)$ 1.91-1.95 (4 H, m, ($\left.\left.\mathrm{CH}_{2}\right)_{2}\right), 2.58-2.61\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.71\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.78\left(4 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{2}\right)_{2}\right), 4.96-4.98$
$\left(1 \mathrm{H}, \mathrm{t}, J_{3} 3.1, \mathrm{CH}\right), 6.20-6.21\left(1 \mathrm{H}, \mathrm{d}, J_{5} 2.9\right.$, Ar-H), 6.65-6.67 (1 H, dd, $\left.J_{3} 8.9, J_{5} 2.9, \mathrm{Ar}-\mathrm{H}\right), 6.81-6.83(1 \mathrm{H}$, d, $\left.J_{3} 8.9, \mathrm{Ar}-\mathrm{H}\right), 7.21-7.44(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 18.8\left(\mathrm{CH}_{2}\right), 25.6\left(2 \times \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$, $30.6\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 41.5\left(2 \times \mathrm{CH}_{3}\right), 84.5(\mathrm{C}), 94.1(\mathrm{CH}), 114.6,114.9,117.3,125.4,127.8,128.0,128.1$, $129.3,144.5,144.6,146.2($ all $\mathrm{Ph}-\mathrm{CH}), 168.4(\mathrm{C}=\mathrm{O}), 169.0(2 \times \mathrm{NC}=\mathrm{O}) ; v_{\max } / \mathrm{cm}^{-1} 3010,1711,1652,1426$, 1135 HRMS (ESI): found $\mathrm{MH}^{+}, 515.2197\left(\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}\right.$ requires 515.2182); m/z (ES1) $537\left(\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{NaN}_{2} \mathrm{O}_{6}\right.$, $1 \%), 515\left(\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}, 83\right), 418$ (37.5), 302 (100).

${ }^{13} \mathrm{C}$ NMR in CDCl_{3}
$\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right)$

2,2'-((Oxybis(ethane-2,1-diyl))bis(oxy))diethanamine (8) was prepared according to the synthetic route described by Numata et al. ${ }^{3}$

N-(2-(2-(2-(2-Aminoethoxy)ethoxy)ethoxy)ethyl)-4-(6-(dimethylamino)-4,4-diphenyl-4H-benzo[d][1,3]dioxin-2-yl)butanamide (1')
NHS ester $7(0.100 \mathrm{~g}, 0.195 \mathrm{mmol})$ in dichloromethane $(1 \mathrm{~mL})$ was added dropwise to a solution of tetraethyleneglycol diamine $8(0.149 \mathrm{~g}, 0.777 \mathrm{mmol})$ in dichloromethane (1 mL) over 30 minutes. The solution was stirred for 48 hours at room temperature and quenched with brine $(10 \mathrm{~mL})$. The aqueous layer was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$), the organic layers were combined and dried over MgSO_{4}. The solution was evaporated to dryness and the residue purified by silica column chromatography ($2: 8: 0.1$ $\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TEA}\right)$ to yield compound 1 as a colourless oil $(0.039 \mathrm{~g}, 40 \%) ; R_{\mathrm{f}} 0.20\left(3: 7 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.76-1.88\left(4 \mathrm{H}, \mathrm{m}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.12-2.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.70\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right)$, 2.82-2.83 ($2 \mathrm{H}, \mathrm{t}, J_{3}=5.1 \mathrm{~Hz}, \mathrm{CH}_{2}$), 3.39-3.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 3.46-3.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 3.52-3.55 (2 H, m, $\left.\mathrm{CH}_{2}\right)$, 3.58-3.65 ($\left.8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right), 4.92-4.94\left(1 \mathrm{H}, \mathrm{t}, J_{3} 4.7, \mathrm{CH}\right), 6.18-6.19\left(1 \mathrm{H}, \mathrm{d}, J_{5} 3.0\right.$, $\left.\mathrm{Ar}-\mathrm{H}\right)$, 6.47-6.49 $\left(1 \mathrm{H}, \mathrm{bs}, \mathrm{NH}_{2}\right)$ 6.63-6.66 ($\left.1 \mathrm{H}, \mathrm{dd}, J_{3} 9.0 \mathrm{~Hz}, J_{5} 3.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\right), 6.78-6.80\left(1 \mathrm{H}, \mathrm{d}, J_{3} 9.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\right)$, 7.20-7.41 $(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}) ; \delta_{\mathrm{C}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 19.8\left(\mathrm{CH}_{2}\right), 33.7\left(\mathrm{CH}_{2} \mathrm{CH}\right), 36.0\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 39.2\left(\mathrm{CH}_{2} \mathrm{NH}\right)$ $40.1\left(\mathrm{CH}_{2} \mathrm{NH}\right), 41.4\left(2 \mathrm{x} \mathrm{CH}_{3}\right), 67.9\left(\mathrm{CH}_{2}\right), 69.7\left(\mathrm{CH}_{2}\right), 70.0\left(\mathrm{CH}_{2}\right) 70.1\left(\mathrm{CH}_{2}\right), 84.3(\mathrm{C}), 94.6(\mathrm{CH}), 114.4$, 114.7, 117.1, 125.4, 127.3, 127.7, 127.8, 127.9, 128.1, 129.2, 129.3, 144.4, 144.5, 144.7, 146.2, (all Ph-CH), $173.6(\mathrm{C}=\mathrm{O}) ; v_{\max } / \mathrm{cm}^{-1} 2955,2985,1650,1525,1500,1255$; HRMS (ESI): found $\mathrm{MNa}^{+}, 614.3229$ $\left(\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}\right.$ requires 614.3206); m/z (ES1) $592\left(\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{6}, 47 \%\right), 302(45 \%), 242$ (100).

References

1. P. Wang, Y. Wang, H. Hu, C. Spencer, X. Liang, and L. Pan, J. Org. Chem., 2008, 73, 6152-6157.
2. E. Vedejs, M. Arnost, and J. Hagen, J. Org. Chem., 1979, 44, 3230-3238.
3. M. Numata, K. Koumoto, M. Mizu, K. Sakurai, and S. Shinkai, Org. Biomol. Chem., 2005, 3, 22552261.
