Supporting Information

Hierarchical SnO₂/Fe₂O₃ Heterostructures as Lithium-Ion Battery Anodes

Yanli Wang, Jingjie Xu, Hao Wu, Ming Xu, Zheng Peng, and Gengfeng Zheng*

Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai,

200433, China

* Corresponding author: gfzheng@fudan.edu.cn (G.Z.)

Figure S1. (a) Fe 2p XPS spectra collected for the SnO_2/Fe_2O_3 heterostructures (upper) and the pure Fe₂O₃ nanorods (lower). (b) Sn 3d xps spectra collected for the SnO_2/Fe_2O_3 heterostructures (lower) and the pure SnO_2 nanosheets (upper). The Sn 3p spectrum of SnO_2/Fe_2O_3 heterostructures was also shown in (a).

Figure S2. The EDX spectrum of SnO_2/Fe_2O_3 heterostructures showing a Sn/Fe ratio as 2.3 : 1.

Figure S3. TEM images of (a) single branched nanosheet, and (b-d) the corresponding elemental mapping of Fe, Sn and O.

Figure S4. Pore size distributions calculated by the BJH method from the adsorption branch of in Figure 3: (a) SnO_2/Fe_2O_3 heterostructures; (b) SnO_2 nanosheets; (c) Fe_2O_3 nanorods.

Figure S5. Charge-discharge profiles at a current rate of 400 mA g^{-1} for the first, second, fifth and tenth cycles: (a) Fe₂O₃ nanorods; (b) SnO₂ nanosheets.