Supplementary Information

Highly luminescent CuInS₂-ZnS nanocrystals: achieving phase transfer and nuclear homing property simultaneously through simple TTAB modification

Meina Wang, Xiangyou Liu, Chuanbao Cao and Long Wang

Table S1. Analysis of the compositions of CIS and CIS-ZnS nanocrystals.

Sample	Analytical method	Chemical component			
		Cu	In	Zn	S
CIS	Atomic composition (%) [a]	28.59	23.12	N.D.	48.29
	Elemental content (µM) [b]	125.26	113.84	N.D.	
CIS-ZnS	Atomic composition (%)	16.40	13.86	14.13	55.61
	Elemental content (µM)	127.08	118.79	123.35	

[a] Estimated from EDS spectra. [b] Measure by ICP-AES which was only used to determine the metal elements. "N.D." means not detected.

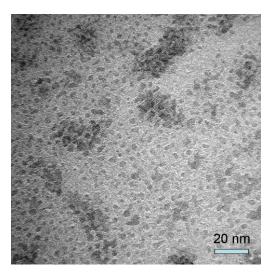


Fig. S1 TEM image of CIS-ZnS-MPA nanocrystals.

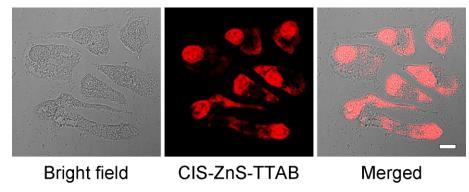


Fig. S2 Images of HepG2 cells taken after they were treated with CIS-ZnS-TTAB nanocrystals (\sim 500 μ M) for 6 h. Scale bars: 10 μ m.