Supporting information for

Controlled synthesis of shell cross-linked magnetic micelles for efficient liver MR imaging

Dechao Niu,^a Zhiwen Zhang,^b Shijun Jiang,^b Zhi Ma,^c Xiaohang Liu,^d Yongsheng

Li,*^{*a*} Liangping Zhou,^{*d*} Changsheng Liu,^{*a*} Yaping Li,*^{*b*} and Jianlin Shi*^{*a,e*}

^a School of Materials Science and Engineering, East China University of Science and

Technology, Shanghai 200237, China.

^b Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of

Sciences, Shanghai 201203, China

^c Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032,

China

^d Department of radiology, Shanghai Cancer hospital, Fudan University, Shanghai, 200032,

China

^e State Key Laboratory of High Performance Ceramics and Superfine Microstructure,

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

Figure S1. (a) TEM image and (b) particle size distribution of hydrophobic magnetite nanoparticles determined by dynamic light scattering (DLS) measurements in THF; (c) Photograph of magnetically attracted Fe_3O_4 nanoparticles dispersed in THF; (d) XRD pattern of 6 nm magnetite nanoparticles.

Figure S2. Field-dependent magnetization hysteresis loop of RhB-SCL-MMs-80 (a), RhB-SCL-MMs-130 (b) and RhB-SCL-MMs-180 (c) at 300 K.

Figure S3. Cell viability of macrophage cell line RAW264.7 treated with various concentrations of RhB-SCL-MMs-80, RhB-SCL-MMs-130 and RhB-SCL-MMs-180 as measured by the MTT assay.

Figure S4. Histological analysis of heart, liver, spleen, kidney, and lung tissue from ICR mice in 24 h of injection with RhB-SCL-MMs-80, RhB-SCL-MMs-130 and RhB-SCL-MMs-180 through tail veins. Images were acquired at 100× magnification.

Figure S5. T_2 relaxation rate (1/ T_2) as a function of Fe concentration for the MMs (a) and the RhB-SCL-MMs (b) at 3.0 T, respectively. The slope indicates the specific relaxivity value, r_2 .

Figure S6. T_2 relaxation rate (1/ T_2) as a function of Fe concentration for the DMSA-coated Fe_3O_4 containing single magnetite nanoparticles at 3.0 T, which were synthesized based on the reported method [ref 11 in the text]. Y. M. Huh, Y. W. Jun, H. T. Song, S. Kim, J. S. Choi, J. H. Lee, S. Yoon, K. S. Kim, J. S. Shin, J. S. Suh, J. Cheon, *J. Am. Chem. Soc.* **2005**, *127*, 12387.

Figure S7. Hydrodynamic diameters of SCL-MMs in water (a) and PEGylated SCL-MMs in PBS (b) determined by DLS. The inset is digital photograph of samples dispersed in PBS. The results show that the diameter of SCL-MMs increased from 110.7 to 137.2 nm after PEGylation, indicating the successful grafting of PEG molecules on the surface of SCL-MMs. Besides, the PEGylated SCL-MMs displays well stability in PBS, while the SCL-MMs without PEG precipitated quickly in PBS solution. This phenomenon further confirmed the important role of PEG in biomedical applications.