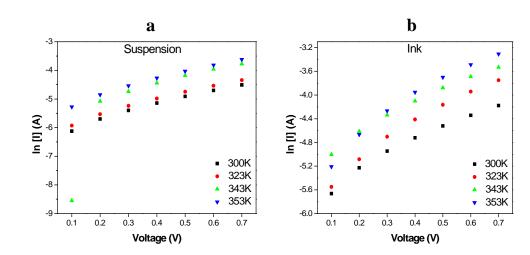
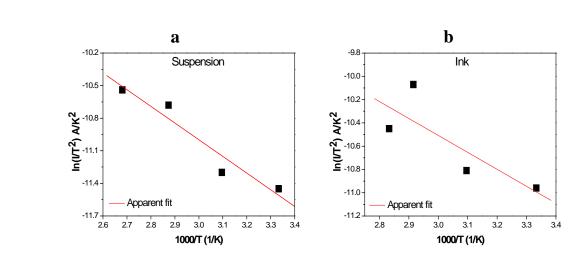

Supporting information


- 2 Printable Electronics-Compatible Silicon Nanoparticles Prepared by
- 3 the Facile Decomposition of SiS₂ and its Application in a back-to-
- 4 back Schottky Diode
- 5 Priyesh V. More^{ab}, Sunho Jeong^b, Ji-yoon Lee^b, Yeong-Hui Seo^b, Beyong-Hwan Ryu *a,b and
- 6 Youngmin Choi*a,b


S.I. Figure 1: Conductivity of silicon nanoparticles films at various temperatures. The conductivity was measured under constant applied bias field.

S.I. Figure 2: Plots of ln (I-V) of a) the suspension and b) the ink sample at various temperatures. The m value was obtained by calculating the slope of the linear portion from the plot.

S.I. Figure 3: Plots of ln (I) vs. V of a) the suspension and b) ink sample at various temperatures. The value of n can be calculated directly from the slope of the plot ln I-V, while I_0 is the intercept of ln (I).

S.I. Figure 4: Plots of ln (I/T²) vs. 1000/T for a) the suspension and b) the ink sample. The value of A* (Richardson's constant) was determined from the intercept at the ordinate of the plot of ln (I/T²) vs. 1000/T