Electronic Supplementary Information for:

Transition metal-catalyzed C-H activation as a route to structurally diverse di(arylthiophenyl)-diketopyrrolopyrroles

Junxiang Zhang, Dun-Yen Kang, Stephen Barlow, Seth R. Marder*

School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA 30332-0400.

Contents

1. Experimental Details	pS2
2. Emission Spectra	pS6
3. Cyclic Voltammograms	pS7
4. NMR Spectra of New Compounds	pS8

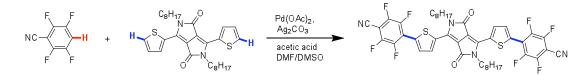

1. Experimental Details

General

Anhydrous DMF, DMSO, DMAc and AcOH were purchased from Aldrich and used as received. $Pd(OAc)_2$ and Ag_2CO_3 were purchased from Strem Chemicals. 2,3,5,6-Tetrafluoropyridine, 2,3,5,6-tetrafluorobenzonitrile and pentafluorobezene were purchased from Acros or Alfa Aesar and used as received. 2,5-Dioctyl-3,6-di(thiophen-2-yl)pyrrolo[3,4-*c*]pyrrole-1,4(2*H*,5*H*)-dione (**1a**) was synthesized according to a literature procedure¹ from 2,5-dihydro-1,4-dioxo-3,6-dithienylpyrrolo[3,4-*c*]pyrrole, which was prepared by the reaction between 2-thiophene carbonitrile and dimethylsuccinate. Its 2,5-di(2-ethylhexyl) analogue, **1b**, was synthesized in an analogous fashion.

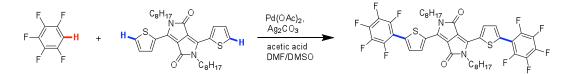
¹H and ¹³C{1H} NMR spectra were acquired using a Bruker AMX-400 spectrometer or a Varian Mercury Vx 300, and the signals were referenced to Me₄Si at 0 ppm using either the residual ¹H signal or the ¹³C signal of the solvent or internal Me₄Si. Most spectra were acquired in CDCl₃ in 5 mm NMR tubes, but ${}^{13}C{}^{1}H$ spectra of the fluoroaryl compounds **2a-c** were acquired in 10 mm NMR tubes using 35 mg of sample in 3 mL 1,1,2,2-CD₂Cl₄. Chromatographic separations were performed using standard flash column chromatography methods using silica gel purchased from Sorbent Technologies (60 Å, 32-63 µm). Electrochemical measurements were carried out under nitrogen in dry deoxygenated 0.1 M tetra-n-butylammonium hexafluorophosphate in dichloromethane (ca. 10⁻⁴ M of analyte) using a conventional three-electrode cell with a glassy carbon working electrode, platinum wire counter electrode, and a Ag wire coated with AgCl as pseudo-reference electrode. Potentials were referenced to ferrocenium/ferrocene using internal ferrocene. Cyclic voltammograms were recorded at a scan rate of 50 mV.s⁻¹. UV-vis-NIR spectra were recorded in 1 cm cells using a Varian Cary 5E spectrometer. Fluorescence spectra were acquired using a Horiba FluoroLog-3 spectrometer. Mass spectra were recorded on an Applied Biosystems 4700 Proteomics Analyzer by the Georgia Tech Mass Spectrometry Facility. Elemental analyses were performed by Atlantic Microlabs.

2,5-Dioctyl-3,6-bis(5-(2,3,5,6-tetrafluoropyridin-4-yl)thiophen-2-yl)pyrrolo[3,4-*c*]pyrrole-1,4(2*H*,5*H*)-dione (2a)



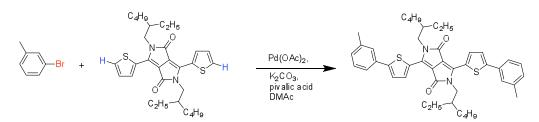
To a septum-capped 500 mL Schlenk flask were added $Pd(OAc)_2$ (22.5 mg, 0.1 mmol), Ag_2CO_3 (1655 mg, 6 mmol), and **1a** (1050 mg, 2 mmol), followed by DMSO (10 mL) and DMF (10 mL),

^{1.} Y. Zou, D. Gendron, R. Badrou-Aïch, A. Najari, Y. Tao, M. Leclerc, Macromolecules 2009, 42, 2891

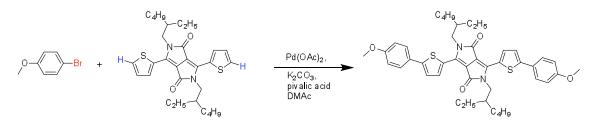

HOAc (240 mg, 4 mmol) and 2,3,5,6-tetrafluoropyridine (1813 mg, 12 mmol) with stirring. The resulting mixture was purged with N₂ for 30 min, screw-capped and heated to 140 °C using an oil bath. After stirring for 8 h, the reaction mixture was cooled to room temperature and diluted with hot CHCl₃ (2 L), filtered through Celite[®] (ca. 50 mL) to remove insoluble inorganic materials, washed with 1 N HCl, brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressue. The residue was purified with silica gel chromatography (500 mL of silica gel, CHCl₃ as eluant) to provide **2a** as purple solid (1.3 g, 79%). ¹H NMR (400 MHz, CDCl₃) δ 9.11 (d, *J* = 4.4 Hz, 2H), 8.03 (d, *J* = 4.4 Hz, 2H), 4.13 (t, *J* = 7.5 Hz, 4H), 1.82-1.72 (m, 4H), 1.48-1.22 (m, 20H), 0.91-0.83 (m, 6H). ¹³C{¹H} NMR (100 MHz, C₂D₂Cl₄) δ 161.14, 144.46 (dt, *J*_{CF} = 245, 17 Hz), 139.61, 138.92 (dd, *J*_{CF} = 268, 35 Hz), 135.28, 134.27, 133.50, 131.05, 125.35 (t, *J*_{CF} = 14 Hz), 110.36, 42.75, 31.78, 30.08, 29.17, 29.16, 26.90, 22.61, 14.03. HRMS (MALDI) *m/z* calcd for C₄₀H₃₉F₈N₄O₂S₂: C, 58.38; H, 4.65; N, 6.81. Found: C, 58.35; H, 4.63; N, 6.88.

4,4'-(5,5'-(2,5-Dioctyl-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-*c*]pyrrole-1,4-diyl)bis(thiophene-5,2-diyl))bis(2,3,5,6-tetrafluorobenzonitrile) (2b)

The same procedure used for **2a** was followed, but using 2,3,5,6-tetrafluorobenzonitrile in place of tetrafluoropyridine, and using 10 mol%, rather than 5 mol%, Pd(OAc)₂. Purification by column chromatography with silica gel chromatography provided **2b** as a black solid (45%). ¹H NMR (400 MHz, CDCl₃) δ 9.09 (d, *J* = 4.0 Hz, 2H), 7.93 (d, *J* = 4.0 Hz, 2H), 4.12 (t, *J* = 8.0 Hz, 4H), 1.80-1.70 (m, 4H), 1.48-1.22 (m, 20H), 0.88-0.82 (m, 6H). ¹³C{¹H} NMR (100 MHz, C₂D₂Cl₄) δ 161.12, 147.77 (dd, *J*_{CF} = 262, 17 Hz), 143.68 (dd, *J*_{CF} = 255, 13 Hz), 139.52, 135.31, 133.96, 133.22, 131.03, 119.51(t, *J* = 14 Hz), 110.28, 107.26, 92.67 (t, *J*_{CF} = 17 Hz), 42.74, 31.77, 30.06, 29.18, 29.16, 26.89, 22.60, 14.02. HRMS (MALDI) *m/z* calcd for C₄₄H₃₉F₈N₄O₂S₂ (MH⁺), 871.2387; found, 871.2359. Anal. Calc. for C₄₄H₃₈F₈N₄O₂S₂: C, 60.68; H, 4.40; N, 6.43. Found: C, 60.83; H, 4.42; N, 6.53.


2,5-Dioctyl-3,6-bis(5-(perfluorophenyl)thiophen-2-yl)pyrrolo[3,4-*c*]pyrrole-1,4(2*H*,5*H*)-dione (2c)

The same procedure used for 2a was followed, but using pentafluorobenzene in place of tetrafluoropyridine. Purification by column chromatography with silica gel chromatography


provided **2c** as purple solid (23%). ¹H NMR (300 MHz, CDCl₃) δ 9.03 (d, J = 4.2 Hz, 2H), 7.71 (d, J = 4.2 Hz, 2H), 4.10 (t, J = 7.8 Hz, 4H), 1.82-1.70 (m, 4H), 1.48-1.22 (m, 20H), 0.88-0.82 (m, 6H). ¹³C{¹H} NMR (100 MHz, C₂D₂Cl₄) δ 160.97, 142.87-142.78 (m), 139.45-139.13 (m), 136.98-136.85 (m), 134.83, 131.78, 131.33, 131.16-131.06 (m), 109.15, 108.95-108.91 (m), 42.36, 31.50, 30.58, 29.77, 28.90, 26.62, 22.33, 13.74 (one aromatic ¹³C resonance not observed, presumably due to overlap). HRMS (MALDI) *m*/*z* calcd for C₄₂H₃₉F₁₀N₂O₂S₂ (MH⁺), 857.2293; found, 857.2301. Anal. Calc. for C₄₂H₃₈F₁₀N₂O₂S₂: C, 58.87; H, 4.47; N, 3.27. Found: C, 58.52; H, 4.23; N, 3.26.

2,5-Bis(2-ethylhexyl)-3,6-bis(5-(*m*-tolyl)thiophen-2-yl)pyrrolo[3,4-*c*]pyrrole-1,4(2*H*,5*H*)-dione (3a)

2,5-Bis(2-ethylhexyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (1b, 1 mmol, 524 mg), K₂CO₃ (4.5 equiv, 4.5 mmol, 622 mg), Pd(OAc)₂ (10 mol %, 0.1 mmol, 22 mg), and pivalic acid (1 eq., 1 mmol, 102 mg) were weighed to air and placed in a round-bottomed Schlenk flask equipped with a magnetic stir bar. The flask was purged with argon for 30 min, and dimethyl acetamide (DMAc) (20 mL), 3-bromotoluene (3 mmol, 364 mg) were then added. The reaction mixture was vigorously stirred at 100 °C for 3 h, then cooled to room temperature, diluted with hot CHCl₃ (300 mL), filtered through Celite[®] (1 cm) to remove inorganic solids, washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified using column chromatography (300 ml of silica gel, 50% hexane in CHCl₃ as eluant) to provide **3a** as black solid (600 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.96 (d, J = 4.0 Hz, 2H), 7.51-7.47 (m, 4H), 7.45 (d, J = 4.0 Hz, 2H), 7.32 (t, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0Hz, 2H), 4.14-4.02 (m, 4H), 2.42 (s, 6H), 2.00-1.92 (m, 2H), 1.45-1.25 (m, 16H), 0.92-0.82 (m, 12H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.78, 149.91, 139.91, 138.92, 136.75, 133.12, 129.66, 129.06, 128.71, 126.81, 124.40, 123.33, 108.15, 45.98, 39.26, 30.41, 28.63, 23.70, 23.14, 21.45, 14.10, 10.59. HRMS (MALDI) m/z calcd for $C_{44}H_{52}N_2O_2S_2$ (M⁺), 704.3470; found, 704.3529. Anal. Calc. for C44H52N2O2S2: C, 74.96; H, 7.43; N, 3.97. Found: C, 75.14; H, 7.48; N, 3.82.

2,5-Bis(2-ethylhexyl)-3,6-bis(5-(4-methoxyphenyl)thiophen-2-yl)pyrrolo[3,4-*c*]pyrrole-1,4(2*H*,5*H*)-dione (3b)

The same procedure used for **3a** was followed, but using 4-bromoanisole in place of 3bromotoluene. Purification by column chromatography with silica gel chromatography provides **3b** as dark solid (82%). ¹H NMR (400 MHz, CDCl₃) δ 8.97 (d, J = 4.4 Hz, 2H), 7.64 (d, J = 8.8 Hz, 4H), 7.38 (d, J = 4.0 Hz, 2H), 6.98 (d, J = 8.8 Hz, 4H), 4.16-4.06 (m, 4H), 3.89 (s, 6H), 2.02-1.92 (m, 2H), 1.45-1.25 (m, 16H), 0.92-0.85 (m, 12H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.79, 160.27, 149.76, 139.77, 136.90, 127.93, 127.52, 126.05, 123.46, 114.60, 107.92, 55.45, 45.97, 39.23, 30.37, 28.58, 23.70, 23.13, 14.10, 10.61. HRMS (MALDI) *m/z* calcd for C₄₄H₅₂N₂O₄S₂ (M⁺), 736.3368; found, 736.3362. Anal. Calc. for C₄₄H₅₂N₂O₄S₂: C, 71.70; H, 7.11; N, 3.80. Found: C, 71.85; H, 7.14; N, 3.75.

2,5-Bis(2-ethylhexyl)-3,6-bis(5-(perfluorophenyl)thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (3c)

The same procedure used for **3a** was followed, using 2-bromo-5-methylthiophene in place of 3bromotoluene. Purification by column chromatography with silica gel chromatography provided **3c** as dark solid (39%). ¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, *J* = 4.4 Hz, 2H), 7.22 (d, *J* = 4.0 Hz, 2H), 7.12 (d, *J* = 4.4 Hz, 2H), 6.73 (dd, *J* = ca. 4, <1 Hz, 2H), 4.10-4.00 (m, 4H), 2.52 (d, *J* < 1 Hz, 6H), 1.94-1.88 (m, 2H), 1.38-1.22 (m, 16H), 0.90-0.85 (m, 12H). The ¹H NMR spectrum is very similar to that reported for the same compound in CD₂Cl₂ in ref. 2. HRMS (MALDI) *m/z* calcd for C₄₀H₄₈N₂O₂S₄ (M⁺), 716.2599; found, 716.2590.

^{2.} H. Bürckstümmer, A. Weissenstein, D. Bialas and F. Würthner, J. Org. Chem., 2011, 76, 2426

2. Emission Spectra

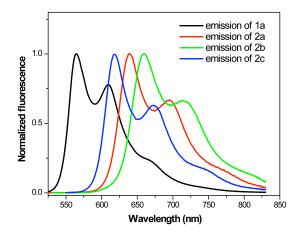
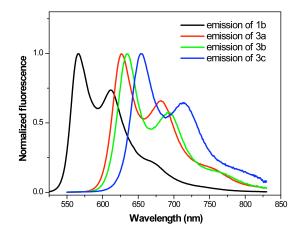
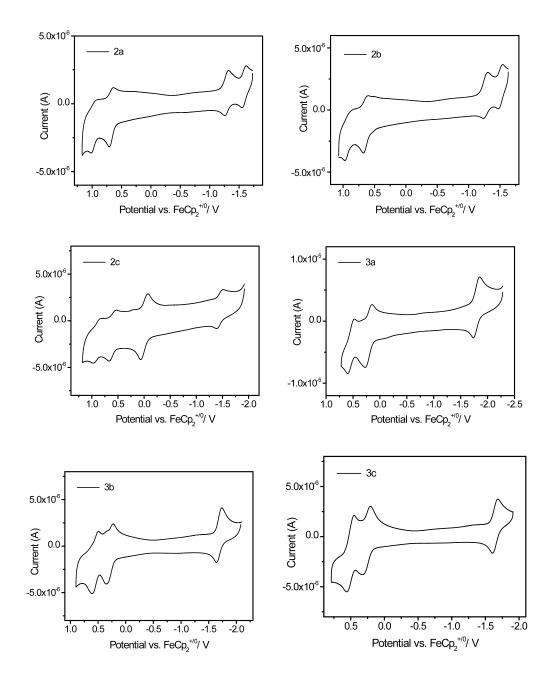
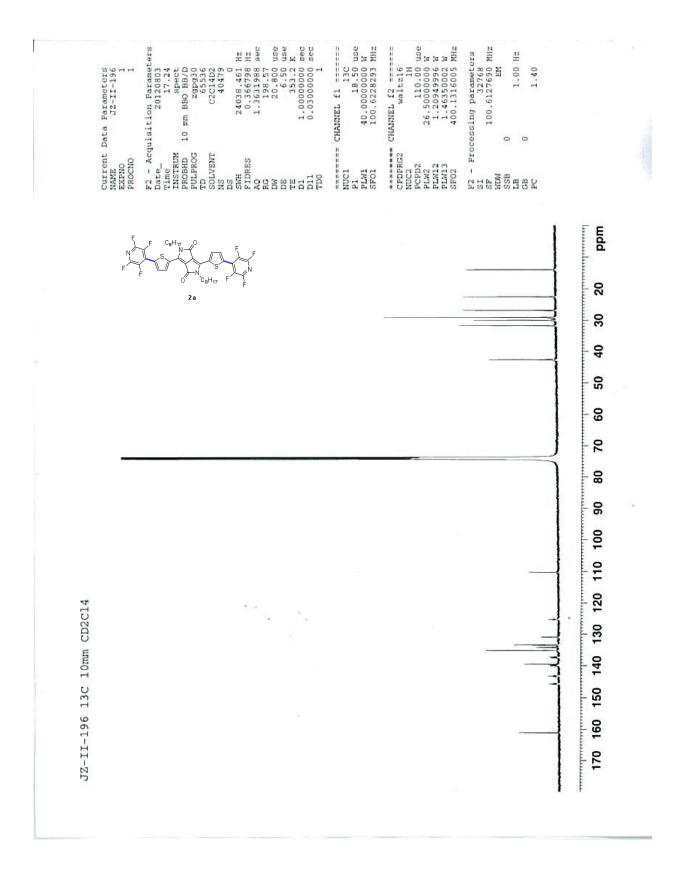



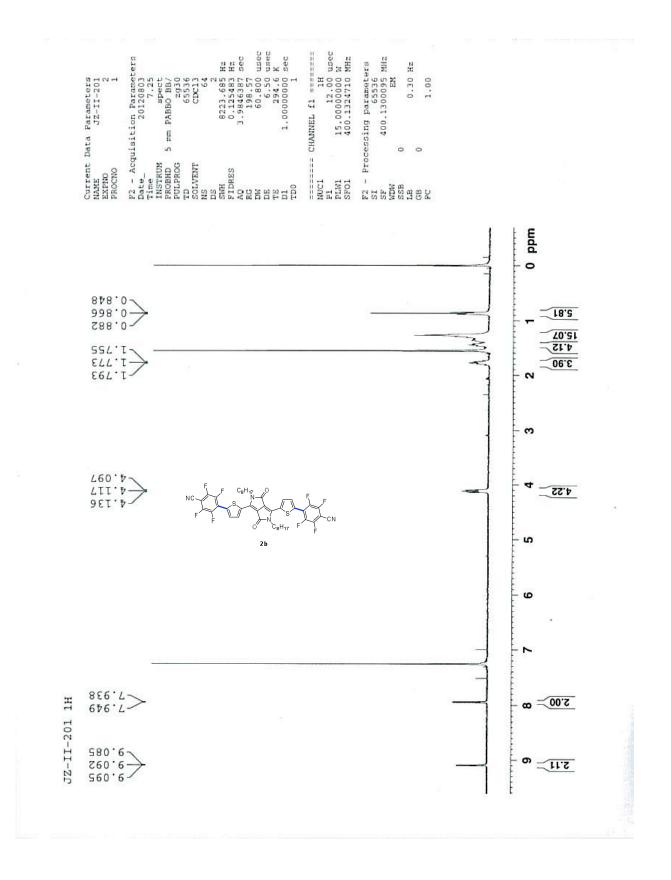
Fig. S1. Normalized emission spectra of compounds 1a and 2a-c in CHCl₃ ($\lambda_{ex} = 500$ nm).

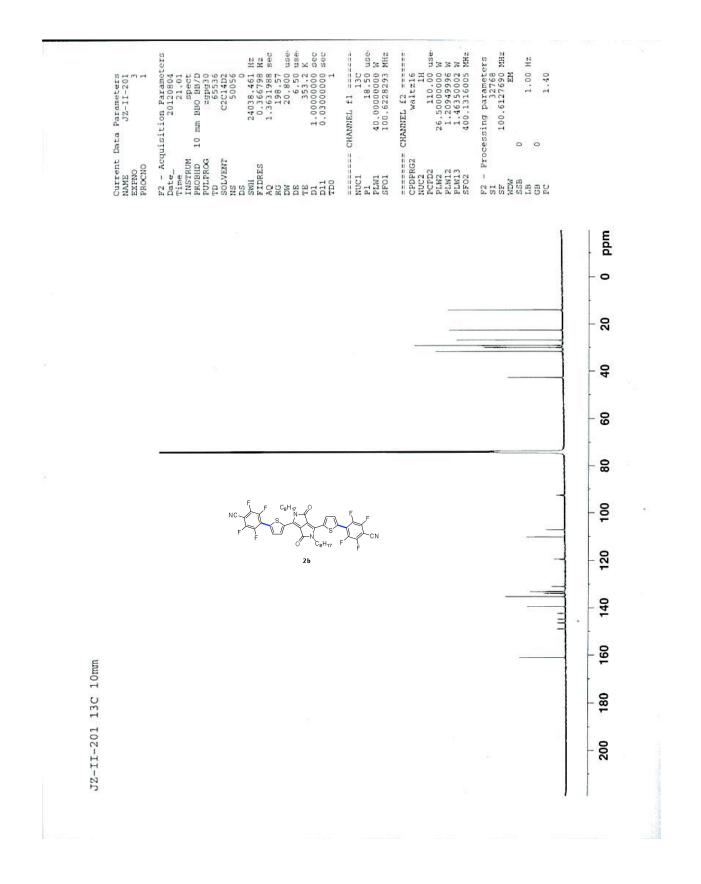
Fig. S2. Normalized emission spectra of compounds **1b** and **3a-c** in CHCl₃ ($\lambda_{ex} = 500$ nm).

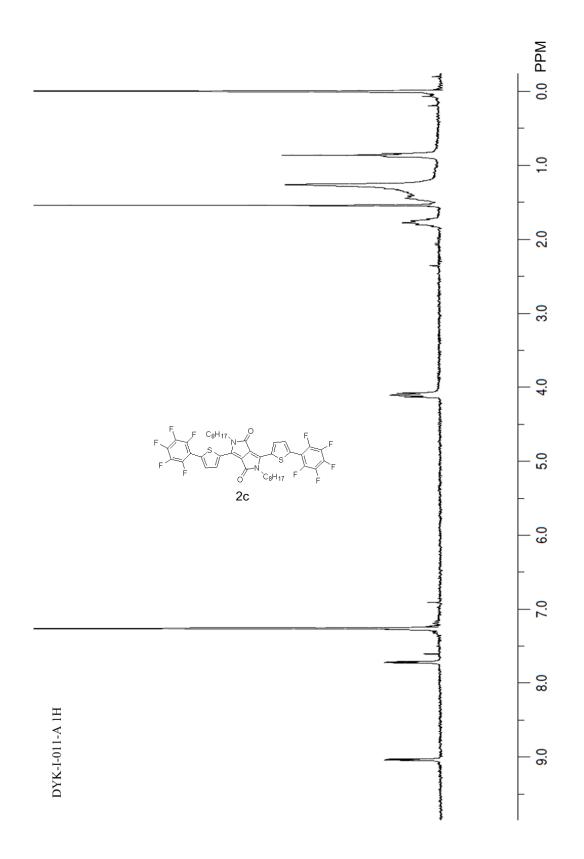
3. Cyclic Voltammograms

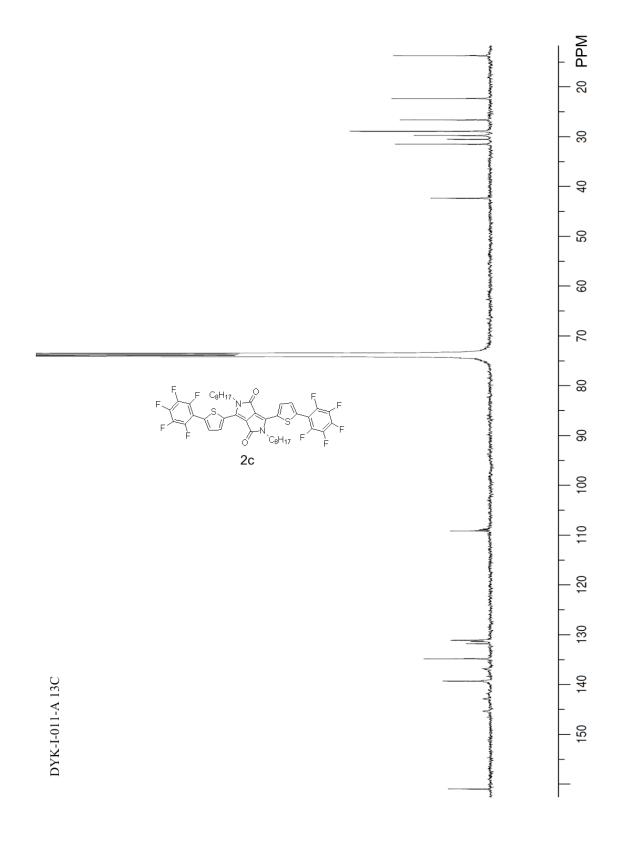



Fig. S3. Cyclic voltammograms of 2a-c and 3a-b in $CH_2Cl_2 / 0.1 \text{ M}^nBu_4NPF_6$.³


^{3.} The sample of **2c** also contains internal ferrocene.


4. NMR Spectra of New Compounds




1H 12.0000000 W 400.1324710 MHz - Processing parameters 65536 400.130000 MHz EM nsec usec F2 - Acquisition Parameters Date 20120806 HZ HZ Sec 560 H 14 295.0 CHANNEL f1 ===== 0.30 Current Data Parameters NAME JZ-II-196 EXPNO 2 PROCNO 1 10.50 spect 2930 5536 65536 CDC13 0.125483 198.57 1.00 20 8223.685 54 é 5 mm 0 0 1 NUCI PLMI FFMI SFOI F2 -SS WDW SSB CB CB PC bpm 1:0 1.5 2.0 2.5 3.0 2a 3.5 4.0 4.5 5.0 5.5 6.0 6.5 ч., с., 7.0 7.5 JZ-II-196 1H 8.0 8.5 9.0 9.5

