[Supporting Information]

In situ growth synthesis of heterostructured LnPO₄-SiO₂ (Ln=La, Ce, and Eu) mesoporous materials as supports for small gold particles used in catalytic CO oxidation

Chengcheng Tian,^{*a,b*} Song-Hai Chai,^{*b*} Xiang Zhu,^{*a,b*} Zili Wu,^{*b*} Andrew Binder,^{*c*} J. Chris Bauer,^{*b*} Suree Brwon,^{*c*} Miaofang Chi,^{*d*} Gabriel M. Veith,^{*d*} Yanglong Guo*^{*a*} and Sheng Dai*^{*b,c*}

^a Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P.R. China

^b Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

^c Department of Chemistry, University of Tennessee–Knoxville, Tennessee 37916-1600, United States

^d Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Figure S1. Nitrogen adsorption-desorption isotherms of Au-LaPO₄-MCFs.

Figure S2. Time-on-stream of CO conversion over Au-LaPO₄-MCFs and Au-La-MCFs after 300 °C

pretreatment. (SV=60000 mL/h/g_{cat})

Figure S3. Wide-angle XRD patterns of Au-La-MCFs, Au-La-MCFs after calcination at 300°C, and 300°C-pretreated Au-La-MCFs after CO oxidation. And Z-contrast STEM of Au-La-MCFs after calcination at 300°C and 300°C-pretreated Au-La-MCFs after CO oxidation.

Figure S4. TOF values of Au-LaPO4 nanoparticles, Au-LaPO4-MCFs, Au-CePO4-MCFs and

Au-EuPO₄-MCFs

Figure S5. XPS spectra of Au-LnPO₄-MCFs samples.

XPS data collected for the Au-LnPO₄-MCF samples showed the formation of a single Au peak, located between 83.8 and 83.6 eV, which is consistent with the formation of Au⁰ nanoparticles, Figure S5. The slight reduction in binding energy, compared to metallic gold foil (84.0 eV) is due to the well documented initial and final state effects that occur with a reduced metal coordination for the surface gold atoms on the small nanoparticles.^{1,2} There was no indication of cationic gold in the samples due to the low content of cationic gold.

- (1) M. G. Mason *Phys. Rev. B* 1983, **27**, 748.
- (2) G. M. Veith; Lupini, A. R.; Dudney, N. J. J. Phys. Chem. C 2009, 113, 269.