Electronic Supplementary Information

Organic Dyes Containing Oligo-Phenothiazine for

Dye-Sensitized Solar Cells[†]

Yuan Jay Chang,^{*,*a*} Po-Ting Chou,^{*b*} Yan-Zuo Lin,^{*c*} Motonori Watanabe,^{*d*} Chih-Jen Yang,^{*d*} Tsung-Mei Chin, ^{*c*} and Tahsin J. Chow^{*,*b*,*d*}

- ^a Department of Chemistry, Tung Hai University, Taichung 407, Taiwan.
 E-mail: jaychang@thu.edu.tw; Fax:+886-4-23590426; Tel: +886-4-23590428 ext 305;
- ^b Department of Chemistry, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei 10617, Taiwan.
- ^c Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan.
- ^d Institute of Chemistry, Academia Sinica, No.128, Sec. 2, Academia Rd., Nankang Dist., Taipei 11529, Taiwan.
 - *E-mail: chowtj@gate.sinica.edu.tw Fax:* +886-2-27884179; *Tel:*+886-2-27898552;

Contents

1.	¹ H and ¹³ C NMR spectra	2-15
2.	UV/Vis spectra	16
3.	Theoretical calculation	17-19
4.	CV spectra and HOMO-LUMO level	20
5.	DSSCs device	21-25
6.	DCA influence	26

1. ¹H and ¹³C NMR spectra

Fig. S1 ¹H NMR (upper) and ¹³C NMR (lower) spectra of 2a in CDCl₃.

Fig. S2 ¹H NMR (upper) and ¹³C NMR (lower) spectra of 2b in CDCl₃.

Fig. S3 ¹H NMR (upper) and ¹³C NMR (lower) spectra of 3a in CDCl₃.

Fig. S4 ¹H NMR (upper) and ¹³C NMR (lower) spectra of 3b in CDCl₃.

Fig. S5 ¹H NMR (upper) and ¹³C NMR (lower) spectra of 4a in CDCl₃.

Fig. S6 ¹H NMR (upper) and ¹³C NMR (lower) spectra of 4b in CDCl₃.

Fig. S7 ¹H NMR (upper) and ¹³C NMR (lower) spectra of 5a in CDCl₃.

Fig. S8 ¹H NMR (upper) and ¹³C NMR (lower) spectra of 5b in CDCl₃.

Fig. S9 ¹H NMR (upper) and ¹³C NMR (lower) spectra of **PT1a** in DMSO- d_6 .

Fig. S10 ¹H NMR (upper) and ¹³C NMR (lower) spectra of PT1b in CDCl₃.

Fig. S11 ¹H NMR (upper) and ¹³C NMR (lower) spectra of PT2a in DMSO-*d*₆.

Fig. S12 ¹H NMR (upper) and ¹³C NMR (lower) spectra of PT2b in DMSO-*d*₆.

Fig. S13 ¹H NMR (upper) and ¹³C NMR (lower) spectra of **PT3a** in THF- d_8 .

Fig. S14 ¹H NMR (upper) and ¹³C NMR (lower) spectra of PT3b in THF-*d*₈.

2. UV/Vis spectra

Fig. S15 The absorption spectra of organic dyes in dichloromethane (left) and on TiO_2 film (right).

Fig. S16 The absorption spectra of organic dyes in dichloromethane (left) and on TiO_2 film (right).

3. Theoretical calculation

dye	f(oscillator strength)(S1)	HOMO/LUMO(eV)	Band gap
PT1a	0.2340	-5.47/-2.38	3.09
PT2a	0.0973	-4.87/-2.35	2.52
PT3a	0.0716	-4.88/-2.37	2.51
PT1b	0.2657	-5.25/-2.28	2.97
PT2b	0.2024	-4.81/-2.24	2.57
PT3b	0.1366	-4.64/-2.23	2.41

Table S1 Calculated *f*, HOMO/LUMO, and energy gap for dyes.

Table S2 Calculated Low-Lying Transition for dyes.

dye	state	excitation ^a	λ _{cal} (eV, nm)	f ^b B3LYP/631G*	HOMO/LUMO
	S 1	95.27% H→L	2.71(457)	0.2340	
PT1a	S2	88.73% H-1→L	3.55(349)	0.2513	-5.47/-2.38
	S3	85.21% H→L+1	3.95(313)	0.1333	
	S 1	98.88% H→L	2.29(540)	0.0973	
PT2a	S2	94.42% H-1→L	2.54(488)	0.2336	-4.87/ -2.35
	S 3	83.66% H→L+2	2.73(454)	0.2579	
	S 1	93.49% H→L	2.26(549)	0.0716	
PT3a	S2	85.65% H-1→L	2.69(460)	0.1055	-4.88/ -2.37
	S 3	87.91% H - 2→L	3.30 (375)	0.1501	
	S 1	95.43% H→L	2.60(476)	0.2657	
PT1b	S2	68.19% H-1→L	3.53(351)	0.1656	-5.25/ -2.28
	S 3	68.67% H→L+1	3.71(334)	0.2913	
	S 1	97.71% H→L	2.31(536)	0.2024	
PT2b	S2	93.99% H-1→L	2.65(468)	0.1775	-4.81/ -2.24
	S 3	57.29% H→L+1	3.37(367)	0.2828	
	S 1	95.19% H→L	2.20(564)	0.1366	
PT3b	S2	86.63% H-1→L	2.46(502)	0.1521	-4.64/ -2.23
	S 3	87.72% H-2→L	2.64(469)	0.1460	

^{*a*}H=HOMO, L=LUMO, H+1=HOMO+1, L+1=LUMO+1, and L+2=LUMO+2. ^{*b*}Oscillator strengths.

Table S3 Difference of Mulliken charges between ground state (S_0) and excited state (S_1) , estimated by time dependent DFT/B3LYP model.

dye	D3	D2	D1	Α
PT1a			0.55444	-0.55444
PT2a		0.75746	-0.15128	-0.60618
PT3a	0.29647	0.59981	-0.28429	-0.61199
PT1b			0.51890	-0.51890
PT2b		0.75704	-0.18077	-0.57627
PT3b	0.28154	0.60993	-0.30372	-0.58775

Difference of Mulliken charge between ground state and excited state.

Fig. S17 Bar-chart plots foe the difference of Mulliken charge listed in Table S3.

Fig. S18 Computed energy levels and molecular orbitals of oligo-phenothiazine series.

Fig. S19 Computed dihedral angles of the dyes.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is ${}^{\odot}$ The Royal Society of Chemistry 2012

4. CV spectra and HOMO-LUMO level

Fig. S20 Oxidative voltammograms of organic dyes.

Fig. S21 HOMO-LUMO energy levels of organic dyes.

5. Performance of DSSCs devices

Solvent system	Dye	$J_{\rm sc}$ (mA cm ⁻²)	V _{oc} (V)	FF (%)	η^{a} (%)
	PT1a	10.60	0.655	62.95	4.37
	PT2a	11.15	0.665	63.94	4.74
THF	PT3a	9.44	0.67	63.03	3.99
	PT1a	10.12	0.67	62.47	4.24
CH_2CI_2	PT2a	10.31	0.675	64.23	4.47
	PT3a	8.8	0.685	63.33	3.82
MeCN+t-BuOH	N719	15.87	0.74	60.87	7.15

Table S4 Performances of DSSCs devices of PT1a, PT2a, and PT3a in THF and CH₂Cl₂.

 J_{sc} : short-current photocurrent density ; V_{oc} : open-circuit photovoltage ; FF : fill factor ; η : total power conversion efficiency. ^aPerformance of DSSCs measured in a 0.25 cm⁻² working area on a FTO (8 Ω /square) substrate. Electrolyte: Lil (0.5 M), I₂ (0.05 M), and TBP (0.5 M) in MeCN

Table S5 Performances of DSSCs devices of PT1a, PT2a, and PT3a in EtOH/ CH_2Cl_2 (1/9) and MeCN/t-BuOH (1/1).

Solvent system	Dye	$J_{\rm sc}$ (mA cm ⁻²)	V _{oc} (V)	FF (%)	η^{a} (%)
	PT1a	11.36	0.65	60.75	4.49
EtOH+CH ₂ Cl ₂	PT2a	11.82	0.67	63.72	5.04
(1/9)	PT3a	9.23	0.67	62.0	3.86
	PT1a	12.91	0.68	62.01	5.45
	PT2a	13.20	0.69	61.86	5.63
MeCN+t-BuOH (1/1)	PT3a	12.09	0.70	59.26	5.01
	N719	15.87	0.74	60.87	7.15

 J_{sc} : short-current photocurrent density; V_{oc} : open-circuit photovoltage; FF: fill factor; η : total power conversion efficiency. ^aPerformance of DSSCs measured in a 0.25 cm⁻² working area on a FTO (8 Ω /square) substrate. Electrolyte: Lil (0.5 M), I₂ (0.05 M), and TBP (0.5 M) in MeCN

Fig. S22 Performances of DSSCs devices of PT1a, PT2a, and PT3a in different solvent systems.

Fig. S23 Absorbed amount of organic dyes on TiO₂ film.

Solvent system	Dye	electrolyte	$J_{\rm sc}$ (mA cm ⁻²)	V _{oc} (V)	FF (%)	$\eta^{a}(\%)$
	PT1a	E1	12.91	0.68	62.01	5.45
		E2	11.03	0.76	64.84	5.43
MaCNI	PT2a	E1	13.20	0.69	61.86	5.63
t-BuOH		E2	12.21	0.77	57.91	5.44
(1/1)	PT3a	E1	12.09	0.70	59.26	5.01
		E2	10.25	0.82	60.14	5.05
	N719	E1	15.87	0.74	60.87	7.15
		E2	18.61	0.76	63.14	8.93

 Table S6 Performances of DSSCs devices of PT1a, PT2a, and PT3a in different electrolyte system.

 J_{sc} : short-current photocurrent density; V_{oc} : open-circuit photovoltage; FF: fill factor; η : total power conversion efficiency. ^a Performance of DSSCs measured in a 0.25 cm⁻² working area on a FTO (8 Ω /square) substrate. **Electrolyte 1**: LiI (0.5 M), I₂ (0.05 M), and TBP (0.5 M) in MeCN. **Electrolyte 2**: 1.0 M 1,3-dimethylimidazolium iodide (DMII), 0.03 M iodine, 0.1 M guanidinium thiocyanate, 0.5 M tert-butylpyridine, 0.05 M lithium iodide in acetonitrile : valeronitrile (85:15, v/v).

Fig. S24 Performances of DSSCs devices of PT1a, PT2a, and PT3a in different electrolyte systems.

Solvent system	Dye	electrolyte	$J_{\rm sc}$ (mA cm ⁻²)	V _{oc} (V)	FF (%)	η^{a} (%)
	PT1b	E1	13.47	0.70	66.76	6.21
		E2	12.87	0.78	65.26	6.52
MaCNI	PT2b	E1	14.48	0.71	61.26	6.30
t-BuOH		E2	14.00	0.82	64.30	7.38
(1/1)	PT3b	E1	11.93	0.72	58.40	5.01
		E2	12.98	0.82	60.52	6.44
	N719	E1	15.87	0.74	60.87	7.15
		E2	18.61	0.76	63.14	8.93

 Table S7 Performances of DSSCs devices of PT1b, PT2b, and PT3b in different electrolyte system.

 J_{sc} : short-current photocurrent density; V_{oc} : open-circuit photovoltage; FF: fill factor; η : total power conversion efficiency. ^a Performance of DSSCs measured in a 0.25 cm⁻² working area on a FTO (8 Ω /square) substrate. Electrolyte 1 : LiI (0.5 M), I₂ (0.05 M), and TBP (0.5 M) in MeCN. Electrolyte 2: 1.0 M 1,3-dimethylimidazolium iodide (DMII), 0.03 M iodine, 0.1 M guanidinium thiocyanate, 0.5 M tert-butylpyridine, 0.05 M lithium iodide in acetonitrile : valeronitrile (85 : 15, v/v).

Fig. S25 Performances of DSSCs devices of PT1b, PT2b, and PT3b in different electrolyte systems.

Fig. S26 EIS Nyquist plots (left) and EIS Bode phase plots (right) of dyes with electrolyte 1 (E1).

Fig. S27 EIS Nyquist plots (left) and EIS Bode phase plots (right) of dyes with electrolyte 2 (E2).

7. DCA influence

Dye ^{<i>a</i>}	DCA	$J_{\rm sc}({\rm mA}\cdot{\rm cm}^{-2})$	$V_{\rm oc}$ (V)	FF	η^b (%)
,	(mM)				
PT1b	0	12.87	0.78	0.65	6.52
	10	13.03	0.80	0.67	6.98
PT2b	0	14.00	0.82	0.64	7.38
	10	14.33	0.83	0.65	7.78
PT3b	0	12.98	0.82	0.60	6.44
	10	13.33	0.83	0.62	6.87

Table S8 Photovoltaic Parameters of Devices made **PT1b**, **PT2b**, **and PT3b** with and without DCA.

 J_{sc} : short-circuit photocurrent density; V_{oc} : open-circuit photovoltage; FF: fill factor; η : total power conversion efficiency.

^{*a*} Concentration of dye is 3×10^{-4} M in MeCN/*t*-BuOH (1/1). ^{*b*} Performance of DSSC measured in a 0.25 cm² working area on an FTO (8 Ω /square) substrate under AM 1.5 condition. Electrolyte 2: 1.0 M, 3-dimethylimidazolium iodide (DMII), 0.03 M iodine, 0.1 M guanidinium thiocyanate, 0.5 M tert-butylpyridine, 0.05 M lithium iodide in acetonitrile : valeronitrile (85 : 15, v/v).

Fig. S28 Performances of DSSCs devices of PT1b, PT2b, and PT3b in electrolyte 2 with or without DCA.