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Liquid-Liquid system. In Supplementary Figure 1a we plot the lengths of droplets 

measured for four different geometries (for dimensions please see Table 1) and the model 

predicts the size well for all of the series. Again, without employing a detailed fitting 

procedure, we assume α = 1 in all cases other than the series measured in a device with h = 

79 µm, for which we obtain a reasonably good fit when α = 1/4. The lower value of α in 

this case can be attributed to the aspect ratio of the height of the channel to the width of the 

inlet for the discontinuous phase. Since h/win ≈ 3/2, and the radial curvature is not bound by 

the height of the channel, the neck assumes a circular cross-section almost immediately 

after it is formed and collapses faster than in geometries in which h < win, consequently 

leading to smaller droplets. 

We note that when the width w of the main channel is much greater than the width 

win of the inlet channel, we observe the effects of the shear stress exerted on the liquid-

liquid interface. In Supplementary Figure 1b we show two series of data taken in a 

channel with w = 200 µm (w/win = 4). The process of break-up in this geometry cannot be 

described by the squeezing model because the droplets do not fill the cross-section of the 

main channel before they break off from the inlet. Under these circumstances the 

viscosity of the continuous fluid changes the observed lengths of the droplets in a 

systematic way (Supplementary Figure 1b). The transition from squeezing (ε/w << 1) to 

shearing (ε ~ w) may be estimated simply: if the typical length-scale l* at which the shear 

stress is exactly balanced by the Laplace pressure l* ≈ γ w / µ u is greater than the width 

w of the outlet channel, then the emerging drop does not yield to shear exerted by the 

continuous fluid and effectively blocks the channel. Under these circumstances the 

squeezing mechanism is expected to describe the break-up. When l* / w < 1, shear stress 



becomes sufficiently important to affect the sizes of the droplets produced. In practice, 

however, we observe that the ratio of the width of the inlet channel to the width of the 

main channel is a very important parameter in this transition. For the same capillary 

numbers we observe that when win / w ≥ 1/2, the droplets break in the �squeezing� mode 

(the tip of the immiscible thread blocks the whole cross-section of the main channel), 

while for win / w < 1/2 we observe that the shear stress exerted on the immiscible tip 

distorts the drop significantly and the squeezing model and the scaling proposed in this 

article no longer apply. Detailed analysis of the deformation of a droplet adhering to a 

wall and subject to simple shear flow � as a function of the ratio of the size of the droplet 

to the area of attachment, and various other parameters � can be found elsewhere1-3. 

 

Supplementary Figure 1. a) Dimensionless length of the droplet (L/w) as a function of 

the ratio of rates of flow (Qwater/Qoil) for different geometries. The lengths obtained for 

the reference geometry h = 33 µm, w = 100 µm, win = 50 µm are denoted with (○). In the 

next three series we changed the following geometrical parameters: the width of the main 

channel w = 50 µm (□), the width of the inlet channel for the discontinuous fluid win = 

100 µm (!), and height of the channels h = 79 µm (●). For all the series we kept the rate 

of flow of the discontinuous phase constant Qwater = 0.14 µL/s. The solid lines denotes the 

fits for α = 1 and α = ¼. b) The same plot for a T-junction geometry (h = 33 µm, win = 50 

µm) with the widest outlet channel that we tested in our experiments (w = 200 µm), for 

Qwater = 0.14 µL/s, and for two different viscosities of the continuous fluid: µ = 10 mPa s 

(○), and µ = 100 mPa s (●). In this system the shear stress exerted on the forming droplet 



has significant influence on its shape and on the break-up process (see insets, both 

obtained for Qoil = 0.14 µL/s). 

 

 

Gas-Liquid system. In order to check that the length of the bubbles produced in 

the T-junction is inversely proportional to the viscous resistance to flow in the outlet 

channel, we changed the length Lch of this channel by incorporating �resistors� � 10 cm 

long sections of the outlet channel. According to the squeezing model, (L – w) / d  = Qgas 

/ Qliquid = p / Qliquid R ∝  p / Lch (because R ∝ µ) and hence [(L – w) / d] Lch ∝  p. 



Experiments with networks containing one (n = 1) and two (n = 2) resistors confirm this 

scaling (see supplemental Figure 2) � a two fold increase of the resistance of the outlet 

channel caused a twofold decrease of the size of the bubbles. 

 

Supplementary Figure 2. a) A micrograph of the microfluidic T-junction device with 

one fluidic �resistor� � a 10-cm-long section of channel added to the device. In the 

experiments with two fluidic resistors, the second resistor of the same geometry was 

positioned downstream of the second one. We vented the end of the outlet channel 

directly to the atmosphere. In this picture we filled the channels with black dye to 

visualize them. b) Scaling of the length of the bubbles with the length of the outlet 

channel (with one (n = 1) or two (n = 2) resistors). The solid line gives a linear fit of the 

combined series (L-w)/d for (n = 1) and 2(L-w)/d for (n = 2). The width of the channel is 

w = 100 µm and the fitting parameter d = 50 µm. 
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