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APPENDIX 1 
Trigonometric relationships in a spherical cap 
 
The article states that the motion is broken down into two phases: A 
first phase during which only the contact angle varies and a second 
phase during which only the wetted radius recedes. The differential 
equations are found by expressing all the variables of the system, 
such as the size of the spherical cap and the flow in function of only 
H, the height of the cap, and constant parameters. As a spherical cap 
has only 2 degrees of freedom, if a variable is constant it is possible 
to write all the parameters of the system in function of on variable. 

 
Figure 1 Spherical cap of Radius R and height H. 

 
Lengths 
In phase 1, the wetted diameter a is constant, thus using the 
Pythagorus theorem we write the radius R:  
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In phase 2, the contact angle Θ is constant and we write the height 
H, using basic trigonometry:  
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It is also possible to write the radius in function of the width and the 
contact angle:  
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Volumes 
In phase 1, the wetted diameter a is constant, thus using the 
Pythagorus theorem we write the volume V:  
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In phase 2, the contact angle Θ is constant and we write the volume 
V, using basic trigonometry:  
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It is also possible to write the volume in function of the width and 
the contact angle:  
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Flow rate calculations 
 
The Laplace Law for a drop of radius R and surface tension γ is 
written:  
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The pressure drop in a rectangular profiled channel of length L0, 
width LD, height Lh and flow rate Q, with λ= LD/Lh, for a liquid of 
viscosity η is written (Washburn law):  
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From (7) and (8) and we obtain the basic differential equation 
characterizing the motion. Relations (1) (2) allow to write R in 
function of H wheather the contact angle is constant or the wetted 
radius is constant:  
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Moreover the flow rate Q is expressed using the volume of the drop 
V and (4) if the wetted radius is constant or (5) if the contact angle 
is constant:  
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First Phase 
The drop placed on the substrate starts with a static contact angle 
Θstat. The constant parameter in this phase is the wetted radius 
a(t)=Rw. By injecting (1) and (11) into (10), we find a differential 
equation in H, the height of the drop:  

γ
π

λ

λ

8
=

)(
= 222

w

w

KKwith

RH
HK

dt
dH

+  

(13)

 

(14)

By integrating (13) with the boundary condition being the initial 
height of the drop H0 at time t0=0 we can write a function t(H): 
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Second phase 
During the second phase the contact angle does not vary anymore, 
and the wetted radius recedes. The constant parameter in this phase 
is the contact angle Θ=Θdyn. By injecting (2) and (12) into (10), we 
find a differential equation in H:  
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We integrate (16) with the the boundary conditions H1 
=Rwtan(Θdyn/2) at a time t1, and find a function H(t): 
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APPENDIX 2 
Refill 
 
Let us suppose that the drop has emptied for a set duration and has 
now a volume V1, a contact angle Θ1 and a pressure P1. The purpose 
is to refill the drop to continue the motion in phase 1, as it presents 
interesting characteristics. A simple refill can be done provided the 
added volume allows the wetted radius of the drop to remain 
constant. Furthermore a more refined refill can be done for specific 
conditions of the contact angle, allowing the pressure to be 
continuous. 
 
Normal Refill 
Once refilled the drop cannot have a contact angle larger than Θstat 
corresponding to a volume Vstat, this limits the volume of the refill 
Vadd. The condition is written:  
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Isobar Refill 
The new drop, consisting of the old drop and a fresh refill, has a 
volume V0, a contact angle Θ0 and a pressure P0. The volume of the 
fresh added drop is Vadd, therefore we write using (6):  
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To ensure an identical pressure in the final drop and the initial drop, 

the following condition derived from (3) and (7) must be verified:  
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This can happen only if Θ0>90 and Θ1<90, which means that only in 
the cases of a hydrophobic substrate can this special refill be 
effectuated. In this case we find the volume to add with (22) and 
(26):  
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