Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic

channel

Supplementary Information

Sindy K.Y. Tang, Claudiu A. Stan, and George M. Whitesides*

Department of Chemistry and Chemical Biology, Harvard University 12 Oxford St., Cambridge, MA 02138

^{*} corresponding author, e-mail: gwhitesides@gmwgroup.harvard.edu

Figure S1. Microscope images of $6-\mu m$ beads suspended in water flowing in expansion chambers with the following geometries: (a) square, (b) square with rounded corners, and at the following flow rates: (i) 1 mL hr⁻¹, (ii) 10 mL hr⁻¹, (iii) 20 mL hr⁻¹, and (iv) 50 mL hr⁻¹, respectively. The length and width of the expansion chamber are both 1 mm. Recirculation zones are prominent at 50 mL hr⁻¹.

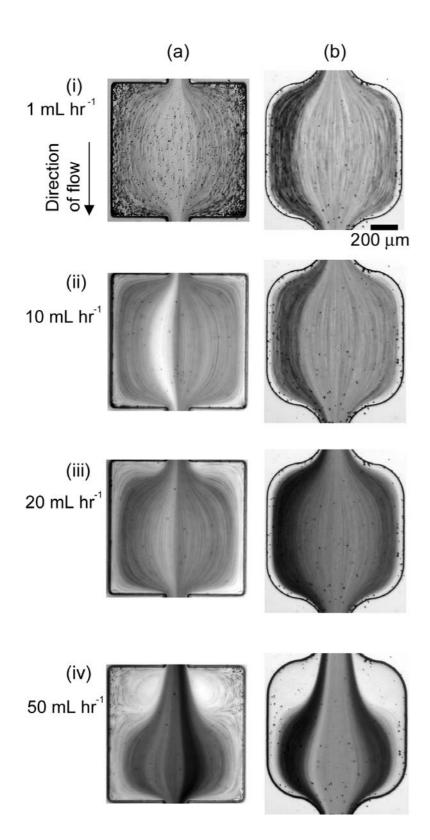
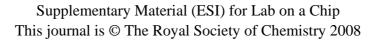



Figure S2. Radius of curvature ($R_{curvature}$) of the core-cladding interface of the L² lens as a function of time (*t*) using (a) a 10 mL-plastic syringe (Becton Dickinson 'Luer-Lok' series), and (b) a 1 mL-glass syringe (Hamilton Gastight series), respectively, when the rate of flow of the core stream changed from 6 to 1.5 mL hr⁻¹ at time t = 0. The total flow rate of the core and both cladding streams was fixed at 10 mL hr⁻¹. The core liquid was benzothiazole, and the cladding liquid was methanol. The data were extracted from movies of the L² lens recorded with a high-speed digital camera (Phantom v7, Vision Research) at (a) 10 and (b) 100 frames per second respectively. The lines are fits to the data using the following expression:

 $R_{curvature}(t) = R_{curvature}(t = \infty) + \Delta R_{curvature} e^{-\frac{t}{\tau}},$

where $\Delta R_{curvature} = R_{curvature}(t = \infty) - R_{curvature}(t = 0)$

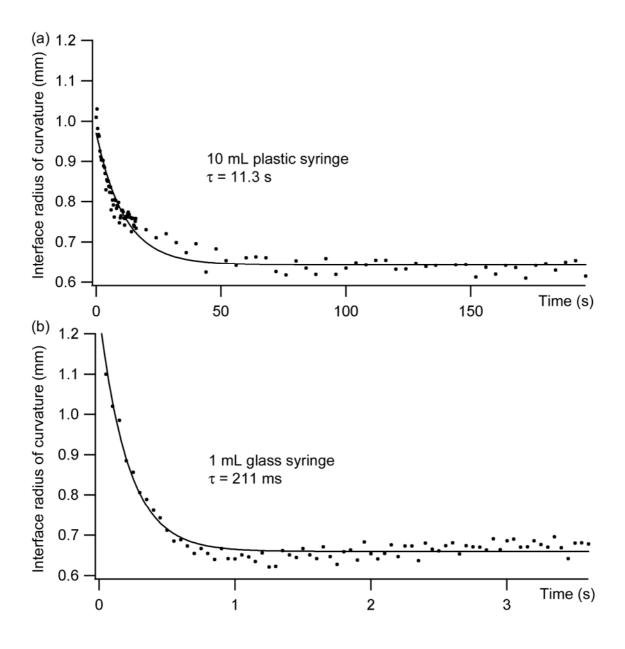


Figure S3. Radius of curvature ($R_{curvature}$) of the core-cladding interface of the L² lens as a function of time (*t*) using (a) a 10 mL-plastic syringe (Becton Dickinson 'Luer-Lok' series), and (b) a 1 mL-glass syringe (Hamilton Gastight series), respectively. The rates of flow of the core and the cladding streams were kept constant at 6 mL hr⁻¹ and 4 mL hr⁻¹ respectively. The core liquid was benzothiazole, and the cladding liquid was methanol. The data were extracted from movies of the L² lens recorded with a high-speed digital camera (Phantom v7, Vision Research) at (a) 10 and (b) 100 frames per second respectively.

Supplementary Material (ESI) for Lab on a Chip This journal is © The Royal Society of Chemistry 2008

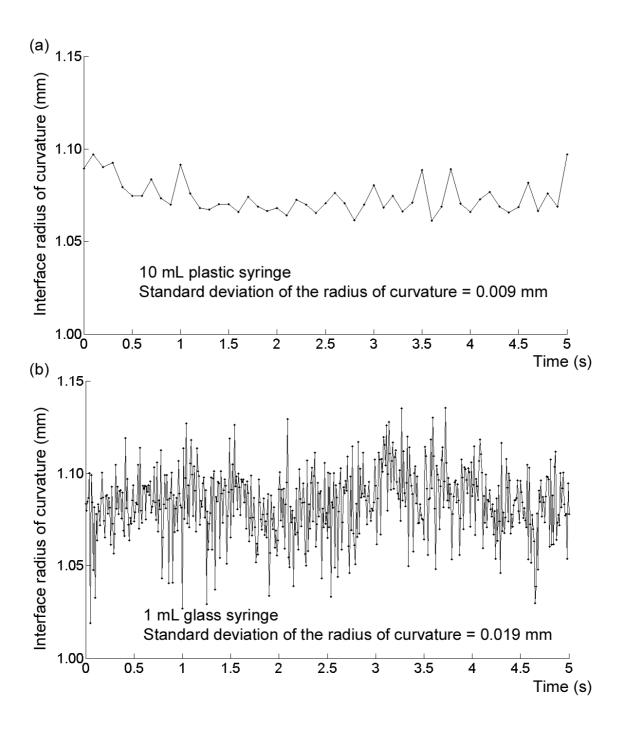


Figure S4. The variation in beam width as a function of the distance from the center of the L² lens (x₁) in a device with a 334-µm aperture. The data were recorded using a CCD camera through a microscope objective with 5x magnification and a lens tube with a further 1.6x magnification. The line is a hyperbola fitted to the data. The core liquid was benzothiazole, and the cladding was a mixture of 53.6% trifluoroethanol, 31.5% benzothiazole and 14.9% ethanol with effective refractive index matched to that of PDMS ($n_D^{22} = 1.412$), and density matched to that of benzothiazole in the core stream ($\rho = 1.24$ g cm⁻³). The flow rates of the core and cladding streams were at 5 mL hr⁻¹, and 5 mL hr⁻¹ respectively. The minimum FWHM was approximately 16 µm.

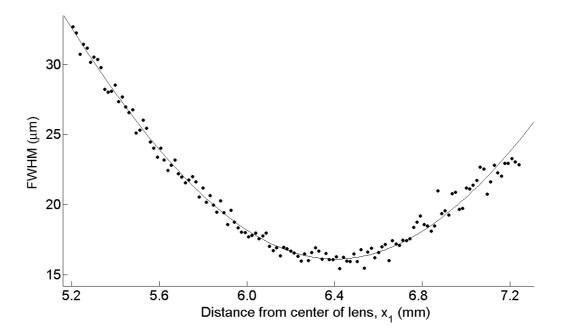
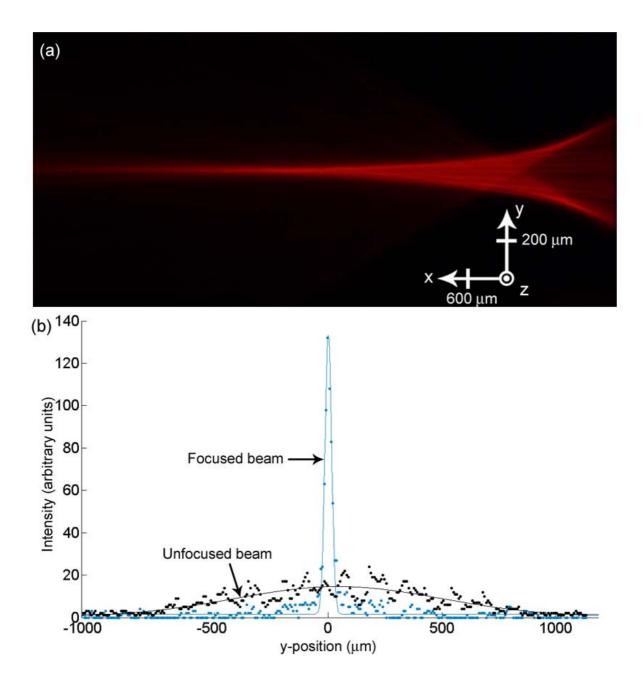



Figure S5. (a) Optical micrograph of the focused beam with no aperture in front of the expansion chamber for a L² lens formed using benzothiazole as the core liquid, and a mixture of 53.6% trifluoroethanol, 31.5% benzothiazole and 14.9% ethanol with effective refractive index matched to that of PDMS ($n_D^{22} = 1.412$), and density matched to that of benzothiazole in the core stream ($\rho = 1.24$ g cm⁻³) as the cladding. The flow rates of the core and cladding streams were at 4.5 mL hr⁻¹, and 5.5 mL hr⁻¹ respectively. The beam-tracing chamber was filled with rhodamine 640 perchlorate in ethylene glycol. (b) Intensity profile of fluorescence of the focused beam (blue dots) in (a) at x₁ (distance away from the center of the L² lens) = 8.6 mm. The FWHM was approximately 40 µm. We also plotted the intensity profile of an unfocused beam (black dots) at the same point in the beam-tracing chamber with no lens. The lines are Gaussian curves fitted to the data. The peak intensity of the focused beam was enhanced approximately 9 times.

		Refractive	Sigma Aldrich	
Name	CAS Number	index ¹	Hazard Codes ²	NFPA ³
methylene iodide	75-11-6	1.749	Xi	H3; F1; R0
1,2-diiodobenzene	615-42-9	1.718	Xi	⁴ H1; F1; R1
1-iodonaphthalene	90-14-2	1.701	Xi	H2; F1; R0
benzothiazole	95-16-9	1.642	Xn	H2; F0; R0
1,1,2,2-tetrabromoethane	79-27-6	1.637	T+	H3; F0; R1
carbon disulfide	75-15-0	1.627	F, T	H3; F4; R0
1-methylnaphthalene	90-12-0	1.618	Xn, N	H1; F2; R1
bromoform	75-25-2	1.596	T, N	H3; F0; R0
3-bromobenzaldehyde	3132-99-8	1.593	Xn	H2; F0; R0
2-chloroaniline	95-51-2	1.589	T,N	H2; F0; R0
thiophenol	108-98-5	1.588	T+	H4; F2; R0
aniline	62-53-3	1.586	T,N	H3; F2; R0
2-iodoethanol	624-76-0	1.572	Т	H2; F2; R0
benzyl benzoate	120-51-4	1.568	Xn	H1; F1; R0
2-thiophenemethanol	636-72-6	1.564	(not available)	H1; F0; R0
bromobenzene	108-86-1	1.557	Xi, N	H2; F2; R0
pyrrole-2-carbonitrile	4513-94-4	1.551	Xn, T	H3; F0; R0;
nitrobenzene	98-95-3	1.550	T, N	H3; F2; R1
styrene	100-42-5	1.545	Xn	H2; F3; R0
benzaldehyde	100-52-7	1.544	Xn	H2; F2; R0
m-cresol	108-39-4	1.542	Т	H3; F2; R0
2-acetyl thiophene	88-15-3	1.540	Т	H1; F2; R0
benzyl alcohol	100-51-6	1.538	Xn	H1; F1; R0
3-acetyl-2,5- dimethylthiophene	2530-10-1	1.532	Xi	⁴ H1; F1; R1
thiophene	110-02-1	1.526	F, T	H2; F3; R0
pyrrole	109-97-7	1.508	Т	H2; F2; R0
2,4-dimethyl thiazole	541-58-2	1.502	Xi	⁴ H1; F2; R1
2-isobutyl thiazole	18640-74-9	1.491	Xi	⁴ H1; F2; R1
dimethyl sulfoxide	67-68-5	1.479	(not available)	H1; F1; R0
formamide	75-12-7	1.447	Т	H2; F1; R0

Table S1. Refractive index and hazard codes of selected liquids.

N,N-dimethylacetamide	127-19-5	1.438	Т	H2; F2; R0
ethylene glycol	107-21-1	1.429	Xn	H1; F1; R0
propylene carbonate	108-32-7	1.422	Xi	H1; F1; R0
acetic acid	64-19-7	1.370	С	H2; F2; R2
ethanol	64-17-5	1.359	F	H0; F3; R0
acetonitrile	75-05-8	1.344	F, Xn	H2; F3; R0
water	7732-18-5	1.333	None	H0; F0; R0
methanol	67-56-1	1.328	F, T	H1; F3; R0
2,2,2-Trifluoroethanol	75-89-8	1.300	Xn	H2; F3; R0

¹Source of refractive indices: Sigma-Aldrich catalog. http://www.sigmaaldrich.com

² Hazard codes from Sigma Aldrich:

gina Aluncii.
Corrosive
Flammable
Extremely flammable
Harmful
Irritant
Dangerous for the environment
Toxic
Very toxic

http://www.sigmaaldrich.com/Help_Pages/Help_Welcome/Product_Search/Risk___Safety_State ments.html#Risk Phrases

³ The National Fire Protection Agency (NFPA) hazard identification system: H, F, R represent Health, Flammability, and Reactivity here. The number ratings range from 0-4. A rating of 0 represents essentially no hazard; a rating of 4 indicates extreme danger. http://www-ssrl.slac.stanford.edu/safety/nfpa_hazard_class.html

⁴ National Paint & Coatings Association (NPCA) Hazardous Materials Identification System (HMIS) ratings: H, F, R represent Health, Flammability, and Reactivity. The number ratings range from 0-4. A rating of 0 represents essentially no hazard; a rating of 4 indicates extreme danger.