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APPENDIX I
Mass saturation concentration of water

The water vapor mass concentration C0 at the in-
terface of the drop is equal to the saturation con-
centration and can be estimated as a function of the
temperature T using the empirical fit for temperature
under 40 degrees:

Csat = 5.018+0.323T+8.185·10−3T 2+3.124·10−4T 3

(1)
Equation (1) states the mass saturation concentra-

tion for pure water. For a liquid of different osmo-
larity, the saturation concentration is given by the
Raoult law, where x is the molar fraction of solute:

Csat[x] = (1− x)Csat

APPENDIX II
Evaporation of a droplet

In the case of a hemispherical droplet of radius R,
the evaporation is proportional to the radius and
∆Csat−i, the water vapor concentration difference be-
tween the surface of the drop and the air around it.
In the general case of a spherical cap of height H, the
evaporation rate is written in function of the height
H, which can be expressed in function of the contact
angle using Appendix 4:

E =
2πD
ρ

∆Csat−iH = λH (2)

APPENDIX III
Evaporation number

A. Equilibration time

Humidity in an Omnitray has been measured after
closing the container to determine the time to achieve
equilibration. An Omnitray has been modified to al-
low the insertion of a humidity probe tip and sealed
using BlueTak. One hundred 10µL drops were placed
in the Omnitray and the lid was either placed on the
container or sealed using BlueTak. Recording of the
humidity was effectuated by hand (fig.1).

B. Continuous fluid loss due to temperature
gradients.

The importance of fluid loss due to temperature gra-
dients has been characterized by creating controlled
temperature gradients using a Pelletier heater/cooler.
One hundred 10µL drops were placed in a sealed Om-
nitray itself placed the heater. A temperature probe
was taped inside the Omnitray on the bottom and on
the top to measure the effective temperature gradient
inside the container. For a 5 degrees temperature dif-
ference, total evaporation was achieved in less than 5
hours.

Figure 1: (Color Online) Humidity equilibration in
a parafilm-sealed Omnitray (top line) and in a closed
Omnitray (bottom line).
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C. Evaporation Number

Evaluation of volume changes and the subsequent os-
molarity variations can be performed using the evap-
oration number (3) with contributions from the initial
evaporation number to reach saturation (4) and evap-
oration number for leaks (5) or temperature gradients
(6):

Ev = Evini + EvLeak + EvTgrad (3)

EVini =
∑
Ri∑
R

CsatVa
ρVi

(4)

EvLeak =
∑
Ri∑
R

D∆Ci−e∆t
ρVi

ζ (5)

EvTgrad =
∑

Ri
D(Csat(T )− Csat(T − dT ))∆t

ρVi
(6)

D. Liquid with a different osmolarity

If the liquid of interest has a large osmoarity, the sat-
uration concentration of the liquid will be reduced.
A difference of osmolarity in the drop n, causes a
variation of ∆Csat−i to ∆Cn. This decreases the
evaporation rate, which can be written by using the
same arguments as for pure water:

For pure water:

E =
2πD
ρ

∆Csat−iR = λR (7)

For different osmolarity:

E =
2πD
ρ

∆CnR =
∆Cn

∆Csati
λR (8)

Thus the fraction of unwanted evaporation, χ, (ra-
tio of evaporation on the drops of interest with the
total evaporation on all the drops) will be shifted ac-
cordingly, with xi the molar fraction of compounds
participating in changing the osmolarity of the liquid:

χ =
∑
Ei∑
En

=
∑

∆CiRi∑
∆CnRn

=

∑
(1− xi

Cw
)Ri∑

(1− xn

Cw
)Rn

(9)

APPENDIX IV
Trigonometric relationships in a spher-
ical cap

A. Lengths

Following are the different relation ships in spherical
caps linking geometrical parameters to each other.

Figure 2: Spherical cap of Radius R and height H.

To express R in function of H and a:

R(t) =
H(t)2 + a2

2H(t)

H in function of the contact angle and R:

H(t) = (1− cos θ)R(t)

Finally a in function of R and the contact angle θ:

a(t) = R(t) sin θ

B. Areas

The surface area of the spherical cap is:

S(t) = 2πR(t)H(t)

C. Volumes

The volume V can be written in function of the wet-
ted radius and the height:

V =
π

6
H(t)(3a2 +H(t)2)

Or in function of the contact angle and the height:

V =
π(2− 3 cos θ + cos3 θ)

3(1− cos θ)3
H3 = g(θ)H3

Or in function of the contact angle and the wetted
radius:

V =
π(2− 3 cos θ + cos3 θ)

3
a3

sin3 θ
= f(θ)

a3

sin3 θ

APPENDIX V
Evaporation from arrays of large num-
ber

The approach used here to analyze evaporation is
taken from electrostatics where, at steady state, the
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potential field, φ and concentration field, C, are so-
lutions to the same harmonic differential equations
as shown in Eq 10. Thus, an analogy can be made
between potential and concentration. The similarity
between diffusion and electrostatics has been lever-
aged in other applications such as analysis of soluble
cell signaling via autocrine factors1,2. Using the anal-
ogy between potential and concentration further, the
electric field can be compared to molecular flux per
unit area (see Eq 11). Now notice that from Gauss’s
law in electrostatics, the charge, Q, contained within
a bounding surface can be calculated similarly to the
total molecular flux, J , entering a surface as shown
by Eq 12.

∇2φ = 0 ∼ ∇2C = 0 (10)
E = ∇φ ∼ F = −D∇C (11)

Q =
1

4π

∫
S

EdS ∼ J =
∫
S

FdS (12)

We know from electrostatics that the potential of
an object can be calculated using the capacitance, ζ,
and charge, q, as shown in Eq 13 where ζ has units
of [cm] in the cgs system and ∆φ is the difference in
the potential at the object and at infinity. Using the
analogies described thus far and Eq 13, Eq 14 can be
derived for the flux to or from an infinitely absorbing
or producing body of arbitrary shape suspended in
an infinite medium. Thus, to find the diffusive flux,
we need only the equivalent electrical capacitance of
the shape. For a sphere in cgs units, ζ = r where
r is the radius of the sphere giving J = 4πrD∆C,
which matches the solution derived directly from the
diffusion equation. The power of this method is not
only the ability to use solutions for capacitances of
many shapes but also to estimate the capacitances
of arrays of shapes, which is crucial to the scaling of
microassays.

∆φ =
q

ζ
(13)

J = 4πDζ ∆C (14)

Two general geometries will be analyzed. The first
geometry is that of a single fluid-air interface and the
second is an array of fluid-air interfaces. The influ-
ence of the shape of an individual fluid-air interface
can be substituted in afterward using equations for
the capacitances. Two shapes of particular interest
are of a sphere and a disk, given by Eq 15 and 16.

ζsphere = r (15)

ζdisk =
2r
π

(16)

In order to estimate the flux to or from the array,
the capacitance of the array is estimated following
the method outlined by Berg and Purcell1. In brief,
if the size of the individual conductors is small com-
pared to the spacing of the conductors, then the elec-
trical potential near an individual conductor can be
estimated as the potential due to the nearest inter-
face, q/ζint, plus the potential due to the rest of the
array, (N − 1)q/ζarray. Thus, the potential has two
main contributions, the nearby interface and the rest
of the interfaces, which are far enough away to appear
as a large uniform interface with geometry matching
the array. Thus, the total capacitance of the array
can be calculated as the ratio of total charge to total
potential, shown in Eq 17. ζint depends on the shape
and size of the individual interfaces, whereas ζarray
depends on the overall shape and size of the array.
In our case ζint will either be a hemisphere, r/2, or a
disk, r/π, where r is the radius of the interface. ζarray
will be given as a/π where a is the radius of the ar-
ray assuming a disk-like pattern. Another important
assumption of this method is that the interfaces are
quite uniformly distributed. Interfaces that are too
close together would behave more like an individual
interface of a different shape and thus reduce N and
change ζint.

Nq
q
ζint

+ (N−1)q
ζarray

(17)

Two solutions will be of particular focus. Eq 18
gives the flux to a disk shaped array of disk shaped
interfaces while Eq 19 gives the flux to a disk shaped
array of hemispherical interfaces. The capacitance for
a disk shaped air-fluid interface is only r/π, which is
half that stated in Eq 16 because there is flux to only
one side of a disk instead of to both sides. Simi-
larly the capacitance of a hemisphere is half that of
a sphere.

Jdisk = 4aD∆C
(

1
1 + 1

N (ar − 1)

)
(18)

Jhemi = 4aD∆C
(

1
1 + 1

N ( 2a
πr − 1)

)
(19)

If we make the assumption N ≈ (N − 1) to simplify
the equations we get.

Jdisk = 4aD∆C
(

1
1 + a

Nr

)
(20)

Jhemi = 4aD∆C
(

1 +
1
2a
πNr

)
(21)
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There is immediate insight into the behavior of the
system using Eq 20 and 21. The portion of the equa-
tions in front of the parentheses is N times the max-
imum flux of an individual interface. Most impor-
tantly, instead of being linear with N, the total flux
increases with N but level off to a maximum value.
The equation can be rearranged to see that the maxi-
mum of either equation is the flux of a one sided disk
of radius a, Jmax = 4aD∆C. Jmax is achieved when
the interfaces sufficiently cover the array to act as a
single uniform surface yet the ratio of areas, Nr2/a2,
is still� 1. Remarkably, Jmax can be approached for
very small values of Nr2/a2 if r is sufficiently smaller
than a.

A limitation of Eq 20 and 21 is that they neglect
convective effects. However, convective effects can
often be modeled using a constant multiplier that is
a function of the fluid velocity. Therefore, although
the equations are limited to zero convection when pre-
dicting fluxes, the behavior of flux with respect to the
number of surfaces remains relatively unchanged.

The effects of convection on flux have also been
treated before by Purcell3 and used as justification
by Lauffenburger2 in cell signaling analysis. The di-
mensionless quantity u = Ωa2/D was experimentally
verified as a measure of the fractional increase in flux
due to convection around a sphere where Ω is the
shear. The experimental also suggested that flux in-
creases less than 10% for values of u less than one.

With Eq 20 and 21, evaporation in microdevices
can be evaluated with insight into the effect of array
spacing, interface size, interface shape, temperature,
humidity, and osmolarity. The results will also al-
low us to relate evaporation measured for an array of
number N and estimate the evaporation for an array
of increased number M.
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