
SUPPLEMENT I: SOLUTION OF 1D DIFFUSION EQUATION

We consider the one-dimensional diffusion equation

∂2c

∂y2
− 1

D

∂c

∂t
= 0 (1)

with y ∈ [0, L]. As initial condition, we apply a linear gradient across the domain, c(y, 0) =

y/L, see Fig. S1. At y = 0, the concentration is pinned to 0 to maintain a constant gradient,
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Figure S1: Initial condition c(y, 0) of the concentration.

and at y = L, we impose a no-flux boundary condition corresponding to the side wall of the

obstacle,

c(0, t) = 0 and
∂c

∂y

∣∣∣
y=L

= 0 . (2)

We solve Eq. (1) by separation of variables,

c(y, t) = Y (y) T (t) , (3)

which results in two separate ordinary differential equations for Y and T , respectively,

Y ′′

Y
= k2 and

1

D

T ′

T
= k2 . (4)

They are solved by the general ansatz

Y (y) = A1e
ky + A2e

−ky and T (t) = Cke
Dk2t . (5)

To satisfy the boundary conditions (2), Y (y) has to be a sine function with the argument

(n + 1
2
)πy/L, where n = 0, 1, 2, ... . This inplies k2 = −(n + 1

2
)2π2/L2. The general solution

is given by summing over all n,
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]
. (6)
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The coefficients cn have to be chosen such that the initial condition

c(y, 0) =
∞∑

n=0

cn sin

[
(n +
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2
)
πy

L

]
=

y

L
(7)

is fulfilled. The initial condition can be considered as part of a triangle wave

f(y) =


−( y

L
+ 2) : y ∈ [−2L,−L]

y
L

: y ∈ [−L, L]

2− y
L

: y ∈ [L, 2L]

(8)

as indicated in Fig. S2. Developing this wave as a Fourier series yields the coefficients cn as
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Figure S2: Initial condition c(y, 0) as part of a triangular wave.

outlined below. In general, every 4L-periodic function can be developed as a Fourier series

f(y) = b0 +
∞∑

n=1

(
an sin

nπ

2L
y + bn cos

nπ

2L
y
)

. (9)

For the function (8) the mean b0 is zero and there are no cosine contributions. For the

remaining coefficient we have

an =
1

2L

∫ 2L

−2L

f(y) sin
nπ

2L
y dy (10)

=
1

L

∫ L

0

y

L
sin

nπ

2L
y dy +

1

L

∫ 2L

L

(
2− y

L

)
sin

nπ

2L
y dy . (11)

Integration by parts yields

an =

 8
π2

(−1)(n−1)/2

n2 : n odd

0 : n even
(12)
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With this, f(y) can be written as

f(y) =
∞∑

n=1

8
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n2
sin

nπ

2L
y for n odd (13)

=
∞∑

n=0

8

π2

(−1)n

(2n + 1)2
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[
(n +

1

2
)
πy

L

]
for n = 0, 1, 2, ... (14)

By comparison with Eq. (7), we see that

cn =
8

π2

(−1)n

(2n + 1)2
for n = 1, 2, ... (15)

and thus

c(y, t) =
2

π2
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n=0
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2
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. (16)
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SUPPLEMENT II: CONCENTRATION AT THE OBSTACLE

In Supplement I, we have shown that a one-dimensional linear gradient profile next to an

impermeable obstacle evolves according to Eq. (16). At the obstacle, i.e. for y = L, Eq. (16)

reduces to

c(L, t) =
2

π2

∞∑
n=0

e−(n+ 1
2
)2 π2

L2 Dt

(n + 1
2
)2

. (17)

We approximate this sum by the integral

c(L, t) =
2

π2

∫ ∞

0

e−(x+ 1
2
)2 π2

L2 Dt
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2
)2

dx + ∆ , (18)

where ∆ = 2
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∑∞
n=0 ∆n with

∆n =
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2
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2
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−
∫ n+1

n

e−(x+ 1
2
)2 π2

L2 Dt

(x + 1
2
)2

dx . (19)

For Eq. (18) integration by parts yields

c(L, t) =
4

π2
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4L2 Dt +
4
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Dt

(∫ 1
2
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=
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erf
[ π
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√
Dt
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+ ∆ . (21)

An analogous result is obtained for the integral in Eq. (19). An analysis of the different

terms in Eq. (21) shows that the expression for c(L, t) can be split into two parts that are

characterized by different time scales,

c(L, t) = A(t)− 2

L

√
Dt

π
. (22)

In Fig. S3, the temporal evolution of both terms is shown for typical values of D and L.

The term A is equal to one and only shows a weak increase for larger times, see Fig S3(a).

For short times, the behavior of c(L, t) is dominated by the second term, note the different

scales on the ordinate of Figs. S3(a) and (b). For small t we can thus approximate the

temporal evolution of c(L, t) by

c(L, t) ≈ 1− 2

L

√
Dt

π
. (23)
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(a) (b)

Figure S3: Temporal evolution of the two terms in Eq. (22). (a) A(t) remains close to 1 and

only diverges for large times. (b) At short times, the temporal evolution is dominated by the
√

t-dependence of the second term. For the channel half width L and the diffusion coefficient D of

the chemoattractant we have chosen 250 µm and 400 µm2/sec, respectively.
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SUPPLEMENT III: ERROR ESTIMATES 

 

1. Error in flow profile 

 

Migration experiments in microfluidic devices are typically performed in wide channels far from the 

side walls to avoid boundary effects. In the numerical finite element simulations, we mimic a wide 

channel by assuming slip boundaries at the side walls. This corresponds to a channel of infinite width 

in y-direction. Here we analyze the error in fluid velocity that emerges from neglecting the finite 

extension of the channel in y-direction. 

 

Between two infinitely extending slabs, the velocity profile is parabolic, 

 

(1) 
vs  z ( )

v0
= 6  z 2 +1.5   . 

 

In a channel of rectangular cross section, on the other hand, the velocity profile is
1
 

 

(2) 
vns  y ,  z ( )

v0
=
1

4
2

cos(n  y ) cos(m  z )

nm 2n2 + m2( )m oddn odd

1

n2m2 2n2 + m2( )m oddn odd

  . 

 

Note that we have introduced the scaling  y =
y

Ly

 and  z =
z

Lz

 with y', z' = -0.5 ... 0.5 in both cases. 

The velocity deviation is now defined as the difference between the real profile (2) and the 

approximated profile (1), 
vns y',  z ( )

v0

vs  z ( )
v0

. 

 

                                                
1
 M. Spiga and G. L. Morini, A symmetric solution for velocity profile in laminar flow through 

rectangular ducts, International Communications in Heat and Mass Transfer, 1994, 21, 469-475. 



For the extension in y-direction we assume Ly = 500 m, a typical value for microfluidic migration 

chambers. For the channel height values of Lz = 10, 25, and 50 μm were considered. The error in the 

velocity profile becomes maximal in the middle of the channel (z’ = 0). Here, we find velocity 

deviations of 1.9 % (Lz = 10 μm), 4.9 % (Lz = 25 μm), and 10.1 % (Lz = 50 μm). An example of the 

velocity deviation for Lz = 25 μm is shown in Fig. S4. For the cell heights rz in our simulations, the 

maximal deviation at the top of the cell never exceeds 5%. 

 

 

Figure S4: Error in the velocity profile for Lz = 25 μm (  = 20). 

 

2. Error in gradient deviation 

 

In our numerical simulations, we characterize the deviations of a concentration gradient across the cell 

surface from the ideal linear profile that is imposed at the inflow of the channel. Here, we analyze how 

the observed gradient deviation depends on the extension of the computational domain in x and y-

direction. The analysis is performed for a cell with rx = 11.25 m and ry = rz = 5 μm and at different 

flow speeds. 

 

In Figs. S5 and S6, we show the results for a cell oriented in the direction of flow (  = 0°) and 

perpendicular to the flow (  = 90°), respectively. In both cases, the dependence on Lx as well as Ly is 

displayed. For the simulations in this paper, we chose Lx = 100 m, Ly = 150 m. According to the 

error analysis presented here, the deviation can be expected to be smaller than 0.3% in all cases. 



 
(a)               (b) 

 

Figure S5: Error in gradient deviation depending on the extension of the computational domain (a) in 

the direction of flow, Lx, (b) in the direction perpendicular to the flow, Ly. An elongated cell (rx = 11.25 

m, ry = rz = 5 μm) is considered, oriented in the direction of flow (  = 0°). The flow velocities are 0 

m/sec (green), 50 m/sec (orange), 100 m/sec (pink), 500 m/sec (purple), and 1000 m/sec (blue). 

 

 

 

 

 

 
(a)               (b) 

 

Figure S6: Error in gradient deviation depending on the extension of the computational domain (a) in 

the direction of flow, Lx, (b) in the direction perpendicular to the flow, Ly. An elongated cell (rx = 11.25 

m, ry = rz = 5 μm) is considered, oriented perpendicular to the flow (  = 90°). Flow speeds as in Fig. 

S5. 



SUPPLEMENT IV: THE INFLUENCE OF FLOW SPEED 

AND CHANNEL HEIGHT 
 

 

 

 

Figure S7: The effect of changing flow speed on the gradient across an elongated cell 

with rz = 5 m and  = 0° in a channel of height Lz = 25 m; fluid flow from left to right, 

panel size 40 m  40 m. (A) Deviation in concentration and (B) deviation in 

concentration gradient for a cell with rx/ry = 2.25. The flow speed increases from left to 

right, 0 m/sec (left), 100 m/sec (middle), 1000 m/sec (right). (C) Global deviation in 

concentration gradient  as a function of flow speed for three different elongations in 

flow direction, rx/ry = 1 (green) 2.25 (yellow) and 4 (pink). 



 

 
 

 

Figure S8: The effect of changing flow speed on the gradient across an elongated and 

rotated cell with rx/ry = 2.25 and rz = 5 m in a channel of height Lz = 25 m; fluid flow 

from left to right, panel size 40 m  40 m. (A) Deviation in concentration and (B) 

deviation in concentration gradient for an orientation of  = 45°. The flow speed 

increases from left to right, 0 m/sec (left), 100 m/sec (middle), 1000 m/sec (right). 

(C) Global deviation in concentration gradient  as a function of flow speed for three 

different orientations, 0° (green) 45° (yellow) and 90° (pink). 



 

 
 

 

Figure S9: The effect of changing channel height Lz on the gradient across a cell of 

circular base with rx = ry = 7.5 m, rz = 5 m; fluid flow from left to right, panel size 40 

m  40 m. (A) Deviation in concentration and (B) deviation in concentration gradient 

for a flow speed of 50 m/sec. The channel height increases from left to right, Lz = 10 m 

(left), 17.5 m (middle), 25 m (right). (C) Global deviation in concentration gradient  

as a function of channel height Lz for two different flow speeds, 50 m/sec (red), 100 

m/sec (blue). 

 



SUPPLEMENT V: SHEAR STRESS 

 

It is known that many eukaryotic cells are sensitive to mechanical stimuli. Their behavior can be 

strongly affected by externally applied mechanical forces. In microfluidic channels, as in any other 

flow chamber, cells are exposed to a shear stress due to fluid flow. In the case of the chemotactic 

ameba Dictyostelium discoideum, is has been shown that shear stress can induce asymmetric 

intracellular localization of signaling proteins and cytoskeletal activity leading to directional 

locomotion (mechanotaxis) [Dalous et al., Biophys. J. 2008]. The use of microfluidic devices in 

chemotaxis assays and for single cell stimulation thus requires a careful control of the influence of 

shear stresses on cell dynamics.  

 

We estimate the wall shear stress  assuming a parabolic Poiseuille profile, 

 

(1) =
6 v0
Lz

 , 

 

where  is the dynamic viscosity, v0 the average fluid velocity, and Lz the channel height. In Fig. S10, 

we show the shear stress as a function of the average fluid velocity (A) and the channel height (B). For 

shear induced directional motion of Dictyostelium it was shown that first effects can be observed for a 

shear stress around  = 0.7 Pa [Decave et al., 2003]. Most of the flow configurations considered in this 

work (v0 = 50 m/sec, Lz = 25 m) generate shear stresses that are more than one order of magnitude 

below the critical value of  = 0.7 Pa. We thus conclude, that the effects of shear stress can be 

neglected here. However, shear stress has to be carefully considered in cases, where the cells under 

investigation show a higher degree of mechanosensitivity or where the channel geometries and flow 

parameters are different. 

 



 

 

 

Figure S10: Wall shear stress in a microfluidic channel with aqueous flow (  = 10
-9

 kg m
-1

 sec
-1

). (A) 

Shear stress as a function of the average fluid velocity v0 for different channel heights. (B) Shear stress 

as a function of channel height for an average fluid velocity of v0 = 50 m/sec. 

 


