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Supplementary Text 

Theoretical and Simulation Analysis 

There have been a number of attempts to create a gradient electric field using a planar interdigitated 

electrode array patterned on an insulating substrate, as shown in Fig. 1(a).  A planar electrode array 

is an effective structure for separating and the preliminary trapping of particles that is easy to 

implement.  The simulated electric flux density distribution around an interdigitated electrode array 

shows that most of the charge on the electrodes is at the edges of the electrodes (Fig. 1(b)).  

According to the following equation, this can be simplified as illustrated in Fig. 1(c), 

 

DN = ρS      (1) 

 

where DN is the electric flux density in the direction normal to the electrode surface, and ρS is the 

surface charge density.  

From a theoretical perspective, an interdigitated electrode array with an applied voltage can be 

modeled more simply as line charges ±ρL placed on both edges of the electrodes, as shown in Fig. 

1(c).  Using this simplified model, the electric field intensity, E
G

, of the line charge placed between 

the suspension medium and the insulating substrate is 
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where εm and εS are the permittivities of the medium and substrate, R is the distance from the line 

charge, and ρaG  is a unit vector in the radial direction from the line charge.   

When an AC voltage vin is applied to interdigitated electrodes with a width and spacing of 2d, as 

shown in Fig. 1(a), the line charge density, ρL, becomes 
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where a is the effective radius of the line electrode in Fig. 1(c). 

In the case of planar electrodes fabricated using metal evaporation, the effective radius, a, of the line 

electrode can be approximated as the thickness of the electrode itself.  For a cell passing through an 

interdigitated electrodes from x = −2d to x = 2d, as shown in Fig. 2(a), we can simply disregard the 

electric field intensity from remote electrodes at dx 5≥ .  Using eqn (2) and (3), the electric field 

intensity, E
G

, acting on the cell can be approximated as  
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and z is the levitation height of the cell from the electrode array. 

Fig. 2(b) compares the calculated and simulated values of 
2

E
G

 from x = −2d to x = 2d at different 

levitation heights of z = 5, 7.5 and 10 μm.  The geometrical values we used for the theoretical 

calculation and simulation were a = 0.2 μm for the effective radius of the electrode, which is also the 

thickness of the electrode, εm = 80ε0 and εS = 3.9ε0 for the permittivities of the medium and substrate, 

respectively, and 2d = 50 μm for the width and spacing of the interdigitated electrodes.  As shown 

in Fig. 2(b), using the simplified line charge model in Fig. 1(c), which neglects charges placed on the 

inside of the electrodes, the calculated result is generally lower than the simulated result.  Although 

the absolute magnitude of the two results differs, the overall shapes of the two results match closely.  

That is, the peak-to-peak value of 
2

E
G

, which plays a practical role in the DEP force explained in 

eqn (6), is roughly same for both the theoretical and simulated results. 

The time-averaged x-directional DEP force, FDEP in Fig. 2(a), is given by,3 
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where Vc is the cell volume, fCM is the Clausius-Mossitti factor, and  and  are the 

complex permittivities of the cell and suspension medium, respectively.  Parameter ω is the radian 

frequency of the electrical field.  Each permittivity takes the form , where j = 

( )ωε *
c ( )ωε *

m

( ωσεε /* j−= )

1− , ε is the dielectric constant of the material, and σ is its electrical conductivity. 

From eqn (3)-(5), eqn (6) can be rewritten as 
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Fig. 2(c) shows the calculated x-directional DEP force on a cell passing from x = −2d to x = 2d in 

Fig. 2(a).  The peak DEP force generated slightly inwards from the electrode edge is somewhat 

larger than that generated toward the outside of the electrode edge.  This agrees with Fig. 2(b), 

which shows that the peak-to-peak value of 
2

E
G

 created over the electrode is larger than that 

created between the electrodes.   

The total force vector on the cell becomes 
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where  is the fluidic drag force on a cell.  The velocity of the cell, fF vG , is  
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where η is the apparent viscosity of the cell in the suspension medium, A is the maximum cross-

section area presented perpendicular to the velocity, and l is the characteristic length of the cell in the 

direction of the velocity vector.  If the levitation height z is constant, then the velocity, vG , is  
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From eqn (10) and (11), the x- and y-directional components match, and 
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tFy f  cos θβ−= .      (13) 
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In Fig. 2(a), del y’ can be obtained using the numerical results of eqn (12) and (13), as 

 

θθ sincos    ' del yxy += .     (14) 

 

Fig. 2(d) shows the numerical calculation of del y’ at different levitation heights z.  This shows that 

a cell, which is passing over the interdigitated electrode array with an angle of θ between the 

electrode and direction of flow, is driven in the lateral direction, as illustrated in Fig. 2(a).  The 

lateral force is determined by the magnitude of the DEP force on the cells, as shown in Fig. 2(d); this 

is determined by the applied frequency and the levitation height z, as explained in eqn (8).   

From eqn (7), for a highly conductive suspension medium, such as physiological solution with a conductivity 

of 17 mS cm-1, the real part of the Clausius-Mossitti factor for the blood cells, based on these dielectric 

parameters from Yang’s studies,4,5,30 is about −0.5 for an applied electric frequency of < 2 MHz.  That is, the 

DEP force acting on blood cells suspended in the physiological medium is typically negative for the 

frequency range < 5 MHz, causing the blood cells to move upward in the microchannel.  As a result, under 

given conditions for a range of frequencies < 2 MHz, del y’ is determined largely by the levitation height of 

the blood cell.  In blood, the typical mass densities of human RBCs and WBCs are approximately 1130 and 

1050~1080 kg/m3, respectively.31-33   Therefore, the DEP levitation height,34,35 which is settled by z-
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directional DEP force and gravitation, of RBCs is typically lower than that of WBCs, and the DEP force 

acting on RBCs will be stronger than that acting on WBCs. 
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