Supplementary Material (ESI) for Lab on a Chip This journal is © The Royal Society of Chemistry 2008

Electronic Supplementary Information

Derivations of curves in Fig. 6

Curve A:

Although the two shell model²⁶ can be used to calculate $\text{Re}(f_{CM})$ of cells in this study, the single shell model^{26,27} simplifies the calculation and brings a similar result. In this model, f_{CM} is expressed as:

$$f_{CM} = \frac{\varepsilon_{cell}^* - \varepsilon_m^*}{\varepsilon_{cell}^* + 2\varepsilon_m^*}, \qquad (\text{supplementary-a})$$

$$\varepsilon_{cell}^* = \frac{\left(\frac{d_c}{d_{cp}}\right)^3 + 2\left(\frac{\varepsilon_{cp}^* - \varepsilon_m^*}{\varepsilon_{cp}^* + 2\varepsilon_m^*}\right)}{\left(\frac{d_c}{d_{cp}}\right)^3 - \left(\frac{\varepsilon_{cp}^* - \varepsilon_m^*}{\varepsilon_{cp}^* + 2\varepsilon_m^*}\right)}, \qquad (\text{supplementary-b})$$

where d_c and d_{cp} are the diameters of the cell and the cytoplasm, ε_m^* and ε_{cp}^* are the complex permittivities of cell membrane and cytoplasm.

$$\varepsilon_{p,m}^* = \varepsilon_0 \varepsilon_{p,m} - j \frac{\sigma_{p,m}}{2\pi f}$$
(6)

■ Curve B:

 V_L/V of cell medium is calculated from:

$$V_L / V = \operatorname{Re}\left(\frac{j2\pi f C_D R_L}{1 + j2\pi f (C_D + C_L) R_L}\right).$$
(4)

where $C_D = \varepsilon_0 \varepsilon_D A/t$, $C_L = \varepsilon_0 \varepsilon_L A/d$, $R_L = \sigma_L d/A$; ε_D and *t* are the dielectric constant and the thickness of SU-8, ε_L , σ_L , and *d* are the dielectric constant, conductivity, and thickness of cell medium.

Supplementary Material (ESI) for Lab on a Chip This journal is © The Royal Society of Chemistry 2008

$\blacksquare \quad \text{Curve } \underline{\text{C}}:$

 V_L/V of water can be calculated as curve B by substituting ε_L and σ_L of water.

■ Curve D:

 $\operatorname{Re}(f_{CM})$ of beads is calculated from eqn (6) and (7).

$$f_{CM} = \frac{\varepsilon_p^* - \varepsilon_m^*}{\varepsilon_p^* + 2\varepsilon_m^*}$$
(7)

$$\varepsilon_{p,m}^{*} = \varepsilon_{0}\varepsilon_{p,m} - j\frac{\sigma_{p,m}}{2\pi f}$$
(6)

■ Curve E:

Modified $\operatorname{Re}(f_{CM})$ is obtained by dividing curve D by 400 to shift the cross-over frequency from 2 MHz to 5 kHz.

- Weighted $\operatorname{Re}(f_{CM})$ of cells is the product of curve A and B.
- Weighted $\operatorname{Re}(f_{CM})$ of beads is the product of curve $\overline{\mathbb{C}}$ and $\overline{\mathbb{E}}$.

	Material	Relative	Conductivity	Dimension (µm)
		permittivity	(S/m)	
Polystyrene bead	Medium	80	1×10 ⁻⁴	Thickness: 200
solution	Bead	2.5	1.45×10^{-2}	Diameter: 5
Neuro-2a solution	Medium	78	4.8×10 ⁻²	Thickness: 200
	Membrane	10	1×10 ⁻⁸	Thickness: 5×10^{-3}
	Cytoplasm	60	5×10 ⁻¹	Diameter: 5
Dielectric	SU8	3		Thickness: 5

The related parameters are listed below:

Supplementary Material (ESI) for Lab on a Chip This journal is © The Royal Society of Chemistry 2008

Video 1: The video for Fig. 4, which is played at an 8x speed.

Video 2: The video for Fig. 5, which is played at a 2x speed.