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Detailed Description of the Physical Model and Simulation 
 
1. Expression for velocity field 

In the limit of low Reynolds numbers typical to microchannel flows, the linear 

superposition theorem holds valid 1 and accordingly, the velocity field at any point can be 

composed of the following components: (i) velocity of the unperturbed background 

Poiseuilli flow ( ), (ii) perturbation to the velocity due to the force applied by the 

vesicle on the fluid ( ), and (iii) perturbation to the velocity due to the force applied by 

the substrate on the fluid ( ). A complete summation expression for velocity can 

accordingly be described as: 
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while the imposed pressure driven flow is described as  
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Here,  is the imposed pressure gradient, H is the height of microchannel,  

and

dxdp /

μ is the viscosity of the fluid. Vesicle and substrate boundaries are represented by 

vΓ and sΓ . The tensor in this expression is the Green’s tensor for free space and is 

derived as  
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where is the iir
th component of the vector rr ′− and is the Kronecker delta. Based on 

the flow-filed described as above, one may derive pertinent expressions for the 

membrane force, , and the substrate force, , as detailed subsequently. 
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1.1. Derivation of Membrane Force 

An expression for  may be derived on the basis of curvature energy, adhesion 

energy and the conservation of local length scale. The force component due to the 

membrane curvature, which is derived as functional derivative of Helfrich curvature 

energy, is expressed as 

membf
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where κ , ,  are the bending rigidity, local curvature, and the unit normal vector, 

respectively. Analogously, the adhesion force component is written as  
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The short range adhesion potential accounts for the membrane-substrate interaction 

and is approximated by a spring model possessing equilibrium length and a spring 

constant , as follows: 
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Here  and  are the coordinates of the corresponding point where the substrate-

end of the adhesion spring is attached and  is the critical length of the spring beyond 

which the adhesion is considered to be snagged off. From previous theoretical and 

experimental reports,

subspx , subspy ,

critl

3-5  is taken to be 1.1 times of the equilibrium length ( ) 

whereas the value of is taken as 10

critl 0l

adhk -3 (N/m) per μm2 assuming there are 

approximately 1000 adhesion sites per μm2 which is fairly standard. 6 The third 

component of the membrane force arises from the conservation of local membrane 

length. Biologically, the membrane is composed of insoluble amphiphilic phospholipids 

bi-layer with proteins embedded in it and is assumed to be an incompressible fluid in 

two-dimensional spaces.2 This fact promptly points towards the incompressibility of local 

arc-length. In order to impose this constraint, a local Lagrange multiplier )(sζ is 

introduced and on subsequent differentiation to energy functional associated with it, the 

resultant expression for the relevant force yields  
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where is unit vector in tangential direction. Combining equations (3), (4) and (6), the 

net expression for  is obtained as 

t̂

membf
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1.2. Substrate Force 

Utilizing the definition of the stress tensor )(
i
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+−= μδσ , the substrate force 

per unit area can be obtained as  
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2. Model Simulation 

2.1. Numerical Implementation 

The cell membrane is discretized in 200 points, considering equal arc lengths between 

each neighboring pair. Similarly, substrate underneath the cell is also discretized in 200 

points. However, while the distance between neighboring substrate points close to the cell 

is kept fixed at 50 nm, it is exponentially increased for the points away from the cell 

owing to their decreasing effects on the velocity field in the cell’s proximity. Starting 

from an initial condition, the grid points are moved by a distance in normal direction 

after each timestep. Following the works by Cantat et al,

dtvn

2 the numerical scheme is 

broadly classified into three major steps, namely, (i) determination of the membrane force 

( ) at each point on the membrane using equation (7), (ii) estimation of the wall 

reaction force assuming a non-slip condition at the wall, which provides the numerical 

values of ,

imembf ,

p yvx ∂∂ and subsequently  at each grid point on the wall, and (iii) 

evaluation of the effective velocity at every grid point on membrane by utilizing equation 

(1). The time step employed for temporal discretization is kept fixed at 10

subsf

-5 s. A major 

constraint towards implementing this numerical scheme is apparently imposed by the 

requirements of realization of length and area constraints. From a fundamental 

perspective, the system demands conservation of both membrane length and the enclosed 

area simultaneously at any time instant. However, the mutual dependence of the 

incompressibility equation , the membrane force equation (7) and the 0/ =∂∂+ svcv tn
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velocity equation (1) imparts an inherent difficulty in explicitly determining the 

magnitude of the Lagrange multiplier at any timestep. However, the aforementioned 

criticality may be resolved by employing a ‘stiff-spring’ like modeling 2 of the Lagrange 

multiplier, described as follows. Employing an expression: )( ,0 iispr dsdsk −=ζ , where 

 is the instantaneous distance between two adjacent points in the membrane and 

is the reference or initial distance, the length of the membrane is conserved within 

0.6%. The magnitude of is set at 10. In similitude, the problem related to the 

conservation of area is also sorted out by introducing an effective pressure term 

, which compels the enclosed area to vary within the 1% of the desired 

value of . The value of is taken as 10

ids

0,ids

sprk

)( 0AAkp pr
eff −=

0A prk 9. Further details of such numerical 

considerations are reported elsewhere, 2 and are not repeated here for the sake of brevity. 

We have also computed cell’s centroid displacement in response to a flow velocity. At 

each time step, co-ordinates of the centroid is computed as and 

where N = 200, x
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= i and yi are co-ordinates of membrane points at that time 

step. 

 

2.2. Equilibrium shape in static condition 

As discussed elaborately by Cantat et al,2 the contact length or equivalently the contact 

area in three dimensions is governed by the membrane rigidity (κ ) and mean potential of 

adhesion ( w ). Close to the surface, the membrane curvature smoothly varies from the 

value obtained in bulk of the cell to zero (please see Fig. 2 in the main text). Thus, at 

equilibrium, for a cell or vesicle adhering homogeneously to a substrate, the excess 

membrane energy due to contact curvature (similar to contact angle for a droplet) should 

be balanced by energy decrease due to the favorable cell-surface interaction. This yields 

to the equilibrium contact radius of curvature as wcR eqeq 2/~/1 κ= . 2 Hence, one 

should expect a cell of any arbitrary shape to take its most energetically favorable shape 

governed by eq. (1) if it is created sufficiently close to the surface, where adhesion force 
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is effective. However, in order to save computational time, we have geometrically 

approximated the cell shape in such a way that the following three conditions are 

satisfied: (i) the cell perimeter is conserved and fixed at a value of Rπ2 , where R is 

radius of a cell (~ 5 μm), (ii) the contact angle is fixed at wReq 2/κ= , and (iii) the 

adhesion length is 20% of the total perimeter. Starting with this and maintaining dp/dx = 

0; the cells have been found to settle into the equilibrium shape with 50 time iterations. 

For all shear induced deformation simulations, the value of imposed pressure gradient is 

set non-zero only after this equilibrium is reached. 

 

3. Theoretical parametric variation of critical shear rate for detachment 

In spite of the fact that qualitative concordance between experimental and theoretical 

findings (please refer to section 4.5 in main text) is satisfied over a large range of values 

of the pertinent cellular parameters such as viscosity, membrane stiffness, adhesion 

strength; the exact numerical value of critical shear rate for peeling off has been found to 

be varying with those parameters (Fig. 1, supplementary information). The standard 

values of all such sensitive parameters are selected on the basis of previous experimental 

evidences. 3-6 While the critical shear rate is observed to be higher with increasing 

adhesion strength and higher viscosity values, this trend is reversed with regard to the 

stiffness. Biophysical implication of this outcome is extremely significant. It has been 

found experimentally that shear stress increases the intracellular viscosity by Rho-kinase 

activation 7 and decreases the membrane rigidity. 8 From the present analysis, it is 

inferred that these adaptive changes will help in avoiding the cell peel-off by increasing 

the effective critical shear rate. Thus, the present theoretical modeling is able to capture 

and forecast cellular adaptation to imparted stress. 

 
 
. 
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Fig. 1: Variation of critical shear rate ( crγ ) with cellular parameters such as – i. viscosity 

(main image), ii. membrane rigidity (inset a) and iii. strength of adhesion (inset b). For 

both insets y-axis represents critical shear rate ( crγ ). 

 

 


