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APPENDIX | - Geometrical deter mination of meniscus shape

The geometrical definitions defining the shape ofemniscus in an expanding reservoigr 2
71/2) are shown in figure S1. The same definitions @ssed with cylindrical (2 = 77/2) or
contracting (2 < 77/2) reservoirs are very similar and not shown héfee reservoir walls can
be described by the lime= F(2) = a; z + a,. Additional geometric information for this systemre
the angles

7
181 =2a _E’ )
B, =m-2a-6,, )
,33=20’+92—g, ©)
as shown in figure S1.
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Figure S1. Geometries used in the calculation of the mesistiape.

Critical volume (V)

The critical volume is the volume at which the nsenis will rupture from a continuous state to
form a moving contact line. This event occurs atltquid volume for which the bottom of the
meniscus reaches the reservoir flagrH R;), and depends only on the reservoir geometry and
6. The first radius of curvature for this system bafound by equating two relationships for
thez-position of the meniscus intersection with theeresir sidewalls,
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d = 2R cos(B;) - D,

(4)

: 2tan(B,)
d, = R (1-sin(8,)). (5)
which leads to
D

R (6)

" 2cos(B,) + tan(B,)sin(B,) - tan(3,))

From this value oR;, the critical volume can be obtainedWy=V, — Vi, where
ds T
V, =] Fidz= ((ad; +a,)* -a3). ®
0 3a,
v, =%h(3R3n +h?), (®)

using the relationship® , = R cos(3;) andh =R (1-sin(3,)).

Complete M ensiscus

This case arises wh&h> V. andd; < H. From the trigonometric relationships

d, =R cos(5;), (9)
d

d = —1, 10

° tan(B) 10

we solve the equatiovi = V, — V; for R;, whereV, andV; are given above. The explicit solution
for Ry is very complicated and will not be repeated h&he center of curvature for the meniscus
will then be (0z,), wherez, = d; + RiSin((%).

I ncomplete M eniscus
This case arises when O<< V. (as well as the additional criteria tligt< H). No analytical

solution can be found fd®, for this geometry, thus the solution must be foitedhtively. Using
the trigonometric relationships

d, =R sin(5;), (1)
d, =R cos@,)—d,, (12)
d, =d,tan(s,), (13)

the equatior/ =V, —V; is solved folR;, whereV; is given above, and; may be written as
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d d 12
V, = nszdz :ﬂj'[ro +(R* - (z- zo)z)zj dz. (14)
0 0

Here,r, andz, are the center of curvature of the meniscus, ande found via

% +d;, ~ R, cos(G;), (15)

z,=d,+d,. (16)

r, =



Supplementary Material (ESI) for Lab on a Chip
This journal is (C) The Royal Society of Chemistry 2009

Evaporation from Micro-Reservoirs
Supplementary Information

N. Scott Lynn, Charles S. Henry, David S. Dandy

APPENDIX Il — one dimensional diffusion in a resairv

Xa = Xa2
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Figure S2. Geometric parameters describing the system.

Consider a well with heightl = z, and liquid level positioned at= z with upper diametey)
and diameter at the menisciBy) as shown in Figure S2. Assuming the averagefader
position ) is not moving very fast, we can perform a quéesady-state mass balance between
the planez andz + Az to find

d

E(A N,)=0, (17)

whereA, is the cross-sectional area of the reservoirNyig the molar flux of water vapor in the
z-direction. Using Fick’s first law of binary diffign, we can also express the molar flux as

N =P (18)
1-x. dz

a

Wherec is the molar concentration of the gas phasis, the diffusion coefficient of water vapor,
andx, = Xa(2) is the mole fraction of water vapor. Again, tleeervoir walls can be described by
the liner =F(2) = a; z+ a,, thusA, can be expressed as a function of z

A =nla,z+a,). (19
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Assuming that both the molar concentration andudiéin coefficient are constant with dilute
values ofx,, substitution of equations (18) and (19) into emque(17) and simpifying yields

2
df(az+a)’ d)_g 0
dz{ 1-x, dz

Integration of equation (20) twice with respecttgelds

C:1

Inl-x,) =———+C,. (21
a(az+a,)
The boundary conditions for this problem are then
Xa=Xa atz=z (22)
Xa =Xa2 at 2= 12, (23)

wherex,; andxs, represent the mole fraction of water vapor atiéiquid interface and
reservoir entrance, respectively. Noting that= 2(ayz+a,) andD, = 2(@z+ay), the mole
fraction distribution can then be found as

X, =1-exp(), (24)
where
v = D,D, In(l— Xal]+ D, In(L-X,,) =D, In(@-x,) 5
2(D2 - Dl)(312+ az) 1- Xa2 D2 - D1

Eqn. (25) can be used with Eqn. (18) to calculag¢eaverall one-dimensional evaporation rates.
Figure S3 displays the liquid evaporation r@te= N,A M, /pas a function of the dihedral
angle 21 for several different reservoir geometries, whdyegand o correspond to the molecular
weight and density of water, respectively. It cansken that for all reservoir geometri@s,
increases with increasiregand increasing values Bf, consistent with the results of this study.
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Figure S3. Overall evaporation rat€)) vs. the dihedral angleox2for three different
reservoirs with varying values B¥;.



