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1 The flow profile u(y, z).

Figure 1: Geometry of our microfluidic flow chamber

For our micro-channel, we define the channel height as a, and the width as b. We choose our
reference frame so that x increases in the direction of flow, z points up the channel, and y increases
across the channel. See figure 1. The origin is centered in the center of the channel.

The low Reynolds number flow profile in the channel is given by

∇2u =
1
µ

dP

dx
≡ −α (S-1)

On the boundary, Γ, we have the no slip condition u = 0. The Fourier series for u then looks
like

u(y, z) =
∞∑

m=0

∞∑
n=0

Amn cos
[π

b
(2m + 1)y

]
cos

[π

a
(2n + 1)z

]
, (S-2)

where

Amn =
4αγ2a2

π4
· 1
(2m + 1)(2n + 1)

· (−1)m(−1)n

(2m + 1)2 + γ2(2n + 1)2
, (S-3)

and γ ≡ b/a is the aspect ratio.
For high aspect ratio geometries, we see that, over most of the channel, the flow is independent

of the y coordinate. See figure 2. In the case of y-independence, the flow profile is parabolic in z.
That is,

u(y, z) = u0

[
1−

(
2z

a

)2
]

,

where u0 = a2α/8 is the maximum velocity. The average flow velocity ū = 2u0/3.
When using microfluidics for physiological applications, shear stresses must be kept below

certain limits [4, 3]. The wall shear stress is given by τ = µ∂u/∂n, where ∂/∂n is the normal
derivative. For high aspect ratio geometries, this becomes

τ = 6µū/a. (S-4)

In §6, we will present code to calculate the flow profile and wall shear stress for arbitrary aspect
ratio micro-channels.
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Figure 2: The flow profile across a high aspect ratio channel. Here γ = 20 and z = a/2. Notice
that for most of the channel, the flow is independent of the y component, with the maximum flow
speed being close to the standard, flat plate, parabolic flow value of 3ū/2.

2 The Taylor condition a2/4π2D � l/ū.

In the theory of Taylor [8], convection by the parabolic flow profile in a cylindrical tube tries to
spread a plug of diffusible solute laterally, but radial diffusion works against this effect, washing
out the parabolic shape the plug of solute tries to take. For the theory of Taylor dispersion to
hold, therefore, the radial (or in our case vertical) diffusion time must be much shorter than the
longitudinal convective transport time.

The characteristic convective transport time, tconvect = l/ū, where l is the characteristic length
scale. To calculate the characteristic vertical diffusion time, let us look at the evolution of a
symmetric1 concentration profile that only has z dependence:

∂2c

∂z2
=

1
D

∂c

∂t
.

We can separate variables c(z, t) = cz(z)ct(t):

1
cz

d2cz

dz2
=

a2

Dct

dct

dt
≡ −β2,

where β is a constant. We get that cz = C cos(βz) and ct = exp(−β2Dt). No flux boundary
conditions tell us that dcz/dz = 0 at z = ±a/2. It follows that β = 2πn/a, where n is an integer.
The solution is

c(z, t) =
∞∑

n=0

Cn cos
(

2πnz

a

)
exp

(
−4π2n2D

a2
t

)
.

The slowest decaying mode, n = 1, has a time constant of

tdiffuse =
a2

4π2D
.

Thus, we get the Taylor condition
a2

4π2D
� l

ū
. (S-5)

3 On the geometric constant κ = 1/210.

R. Aris [1] showed that the effective longitudinal diffusion coefficient describing a distribution of
solvent is

K = D +
κa2u2

D
, (S-6)

1We are interested in how quickly vertical diffusion removes the z dependence of a concentration profile generated
by the flow. Since the flow itself is symmetric about z = 0, the concentration profile it generates is also symmetric.
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where D is the diffusion coefficient of the solute, a is the characteristic dimension of the channel,
ū is the mean flow velocity, and κ = χϕ is a geometrical factor.2 Aris defined χ as the normalized
deviation from the mean flow velocity

χ(y, z) =
u(y, z)

u
− 1,

and ϕ as the solution to3

a2∇2ϕ = −χ, on R
∂ϕ
∂n = 0 on ∂R

}
. (S-7)

Here, R represents cross-section, ∂R its boundary, and ∂
∂n is the normal derivative.

We now calculate χ for our high aspect ratio geometry:

χ(y, z) =
1−

(
2z
a

)2∫ 1/2

−1/2
[1− (2ζ)2] dζ

− 1

=
1
2
− 6z

a
.

The equations (S-7) for φ now read

a2 d2ϕ
dz2 = 1

2 −
6z
a , for −a/2 < z < a/2

dϕ/dz = 0, at z = ±a/2

}
.

The solution is
ϕ =

1
2

(z

a

)4

− 1
4

(z

a

)2

+
7

480
.

We can now calculate the geometric factor κ:

κ =
∫ 1/2

−1/2

(
ζ4

2
− ζ2

4
+

7
480

) (
1
2
− 6ζ2

)
dζ

=
1

210
.

Now we have the effective longitudinal diffusion:4

K = D +
1

210
a2u2

D
, (S-8)

and provided that 1) lateral diffusion is negligible and 2) the Taylor condition holds, our problem
essentially becomes one dimensional.

4 Advection-diffusion equation with uncaging source

Figure 3 shows the geometry of our uncaging setup when viewed from above (xy plane). A caged
compound flows across an rectangular region illuminated by a UV light. This light activates
(uncages) material by cleaving the bond between the active part and the caging group. The
region is of length L. The cell that will be stimulated by the uncaged compound is a distance l
downstream of the uncaging light.

2We denote averaging across the cross-section with an over-bar.
3Here we have assumed that solute’s diffusibility is independent of concentration. Note also that these expressions

define ϕ up to a constant, but the constant disappears when calculating κ. Aris defined this constant so that ϕ = 0.
4This is the well known flat plate result [5].
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Figure 3: The uncaging geometry

If we turn on the uncaging light at t = 0, then we can describe the evolution of the concentra-
tions for uncaged (c) and caged (c2) material as follows:

∂c

∂t
= −ū

∂c

∂x
+ K

∂2c

∂x2
+ c2f(x, t) (S-9)

∂c2

∂t
= −ū

∂c2

∂x
+ K2

∂2c2

∂x2
− c2f(x, t) (S-10)

with the initial conditions
c(x, 0) = 0 (S-11)

c2(x, 0) = c0. (S-12)

The function f(x, t) describes the uncaging region:5

f(x, t) =
{

σφI for −L ≤ x ≤ 0 and t > 0
0 otherwise ,

here I is the light intensity, σ is the absorption cross-section, and φ is the quantum yield.
If the diffusivity of the caged compound is markedly different from that of the uncaged species,

(an example is caged calcium), we should solve the coupled equations (S-9) and (S-10) numerically.
If we can assume that the diffusion coefficients of the caged and uncaged substance are com-

parable, as is the cage for many nucleotides, then K = K2. By adding equations (S-9) and (S-10),
we can see that the total concentration follows the advection-diffusion equation. Furthermore, we
see that the initial condition is uniform—add (S-11) and (S-12) together. Therefore, the total
concentration is constant in time and space: c + c2 = c0. We can rewrite (S-9) as

∂c

∂t
= −ū

∂c

∂x
+ K

∂2c

∂x2
+ (c0 − c)f(x, t) (S-13)

We introduce the dispersive length scale ηK = K/ū, dispersive time scale τK = K/ū2, photol-
ysis time scale τp = (σφI)−1, and residence time τr = L/ū. By expressing all lengths in units of
ηK , all times in τK , and concentration in units of c0 we get the dimensionless form of Eq. (S-13):

∂c

∂t
= − ∂c

∂x
+

∂2c

∂x2
+ (1− c)f(x, t) , (S-14)

where

f(x, t) =
{

τ −1
p for −τr ≤ x ≤ 0 and t > 0

0 elsewhere.

Unless stated otherwise, we will use these units for the rest of this section. Note that in the
dimensionless form used here, L = τr. This treatment differs from the main text, in which we left
τp, τr and L in the original units.

5We have assumed that the time-scale for the bond cleavage is insignificant compared to the other time scales
involved in the problem.
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4.1 Steady state solution

We get the steady state solution by setting ∂c
∂t = 0:

d2c

dx2
− dc

dx
+ (1− c)f(x) = 0

The full solution to this equation, with the condition that c→ 0 when x→ −∞, is

c =

 A0e
x for x < −τr

A1e
λ1x + A2e

λ2x + 1 for −τr ≤ x ≤ 0
A3 for x > 0

(S-15)

Here,

λ1,2 =
1
2

(
1±

√
1 + 4/τp

)
,

and the Ai’s are given by the continuity of c and dc/dx at x = −τr and x = 0:

A0 =
λ1(−λ2)eτr (e−λ2τr − e−λ1τr )

λ 2
1 e−λ2τr − λ 2

2 e−λ1τr

A1 = − −λ2

λ 2
1 e−λ2τr − λ 2

2 e−λ1τr

A2 = − λ1

λ 2
1 e−λ2τr − λ 2

2 e−λ1τr

A3 = 1− λ1 − λ2

λ 2
1 e−λ2τr − λ 2

2 e−λ1τr

We will now look at two limiting cases. The first case is when the uncaging light intensity
is high, where we would expect everything to be uncaged. The second case is that of low light
intensity, where we expect to see a linear dependence of the uncaged concentration with the length
and brightness of the uncaging region.

4.1.1 Low Light Intensity Regime: τp � 1

In this limiting case, λ1 = 1 + 1/τp while λ2 = −1/τp. Using this with |λ1| � |λ2|, we get the
concentration to the right of the uncaging region

c(x > 0) = 1− exp
(
−τr

τp

)
. (S-16)

Now, under the additional limiting condition that τp � τr, we get a linear relation between the
uncaged concentration and residence time:

c(x > 0) =
τr

τp
. (S-17)

Restoring our original units for length, time, and concentration,

c(x > 0) =
c0σφIL

ū
. (S-18)

5



4.1.2 Saturating Regime: τp � 1

In this limiting case, we see that
λ1 = −λ2

=

√
1
τp

� 1.

The concentration to the right of the uncaging region

c(x > 0) = A3

= 1− 2λ1

λ 2
1 (eλ1τr + e−λ1τr )

The second term is negligible, and thus,

c(x > 0) = 1,

or in original units, c(x > 0) = c0, as expected.

Figure 4: The time it takes for the concentration to rise from 5% to 95% of the final concentration,
as a function of distance for the three cases of 1) low light intensity, 2) saturating light intensity,
and 3) step-like initial conditions.

4.2 Time dependent solution

4.2.1 Low Light Intensity Regime: τp � 1 and τp � τr.

In the linear regime, the uncaged concentration is far from being saturated, i.e. c � 1. Then,
equation S-14 reads

∂c

∂t
+

∂c

∂x
− ∂2c

∂x2
=

{
τ −1
p for −τr ≤ x ≤ 0
0 elsewhere (S-19)

We get the solution to this equation by convolving the inhomogeneous source term with the Green
function:

c(x, t) =
∫ t

0

∫ 0

−τr

{
τ −1
p√

4π(t− τ)
exp

[
− (x− ξ − t + τ)2

4(t− τ)

]}
dξdτ

=
1

2τp

∫ t

0

[
erf

(
x + τr − t + τ

2
√

t− τ

)
− erf

(
x− t + τ

2
√

t− τ

)]
dτ

(S-20)
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4.2.2 Saturating Regime: τp � 1

In the high light intensity case, everything underneath the light source is uncaged, so we can find
the concentration to the right of the uncaging light by solving the advection diffusion equation

∂c

∂t
= − ∂c

∂x
+

∂2c

∂x2
,

with the boundary condition
c(0, t) = 1,

and the initial condition
c(x > 0, 0) = 0.

The equation can be solved by taking a Laplace transform in time and solving the ordinary
differential equation in space.6 The solution reads

c(x, t) =
ex/2

2

[
ex/2erfc

(
x + t

2
√

t

)
+ e−x/2erfc

(
x− t

2
√

t

)]
. (S-21)

4.2.3 Valve based switching: I = 0 and c(x, 0) = H(−x)

We can treat switching in valve based systems as an initial value problem c(x, 0) = H(−x) with no
source term, I = 0. Here, x = 0 is the location where the valve opens and introduces the solute.
The solution is

c(x, t) =
1
2
erfc

(
x− t

2
√

t

)
.

Irimia et al. [6] describe a system for switching a gradient of fluorescein in ∼ 4 s by using
microfluidic valves. Let us apply the Taylor-Aris theory to this system.

Their channel is 100µm tall with an average flow speed ū = 370µm/s. The diffusion coefficient
of fluorescein D = 425 µm2/s [2]. The observation window is a distance l ≈ 1750 µm away from
the valves.

With these values, we calculate that Pea = 87 and Pe = 1524. The Taylor condition is
satisfied, as Pe 2

a /Pe = 5.0. The effective diffusion coefficient

K = D

(
1 +

Pe 2
a

210

)
= 1.57× 104µm2/s.

We can write the distance as l = 42.5ηK . Referring to the dotted green line in figure 4, we see
that the switching time

t = 31τK = 3.5 s,

which is in good agreement with the experimentally observed switching time.

5 Measuring the diffusion coefficient of caged fluorophores

We filled a 3 cm× 500 µm× 26 µm channel with 10 µM of 3000 MW, dextran conjugated caged
fluorescein. The tubing we used to inject the caged fluorophore was removed from the microfluidic
device, and excess fluid was wiped away from the inlet and outlet. The channel was mounted on
an Olympus Fluoview 1000 dual scanner confocal microscope with a 40x objective. We adjusted
the location of the sample and focus of the microscope so that we were looking near the middle
of the channel. After waiting for the flow inside the device to stop, we imaged a 78µm × 9µm
(125 × 15 pixel2) at a rate of 0.037 s/frame for 50 frames. After the tenth frame, we uncaged a
vertical, 75µm (121 pixel) line through the middle of the imaging region. See figure 5. To obtain

6For example, see [7].
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Figure 5: Regions of interest for diffusion coefficient measurements. The red line corresponds to
a 75µm uncaging region. The green rectangle corresponds to the 78µm× 9µm imaging window.

a better signal to noise ratio, we averaged over 20 measurements, and we collapsed the imaging
region to one dimension by averaging over the height of the frame.

By looking how the fluorescence intensity profile, figure 6(a), evolves with time, we can de-
termine the diffusion coefficient. Provided that the width of the intensity profile is considerably
smaller than the height of the uncaging line, we can treat the problem as a one dimensional diffu-
sion problem. If we model the uncaging (photobleaching) event as releasing C0δ(x−xc)δ(t−tuncage)
of material, then concentration profile

c(x, t) =
C0√
2πσt

exp
[
(x− xc)2

2σ2
t

]
,

where the variance of the distribution σ2
t = 2D(t − tuncage). Assuming that the fluorescence

intensity scales linearly with fluorephore concentration, the intensity should also have this form.

(a) (b)

Figure 6: Determination of the diffusion coefficient for caged fluorescein. a) The fluorescence
intensity profile at various times after a line of fluorescein has been uncaged; tuncage = 0.37s. b)
The squared width, σ 2

t , of the fluorescence distribution as a function of time.

In figure 6(b), we show with blue asterisks the variance of gaussian fits to the fluorescence
intensity profile. The solid black line is a linear fit. From the fit, we get the diffusion coefficient
of our caged fluorescein:

Dcfl = 267± 8µm2/s.

The error reflects the 95% confidence interval of the linear fit.
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6 Matlab codes:

6.1 Calculating flow profile and shear stress

1 % −−−−−−−−−−−−−−−−− flowprofile.m −−−−−−−−−−−−−−−−−−−−−−−−−%
2 % %
3 % This script calculates the flow profile and bottom wall %
4 % shear stress inside a rectangular cross−section channel. %
5 % %
6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
7

8 ubar = 104e−6; % Speed (m/s)
9 a = 26e−6; % Channel height (m)

10 b = 500e−6; % Channel width (m)
11 visc = 1.0e−3 % Dynamic viscosity of water (Pa*s)
12 sumterms = 40; % Number of entries to sum over in m and n
13

14 gam = b/a; % Aspect ratio
15

16 [M,N] = meshgrid(0:sumterms,0:sumterms);
17 clear sumterms;
18

19

20 % First, let's get the average flow velocity normalization
21

22 ubar2=4/(ubar*piˆ2)*sum(sum((1).ˆM./...
23 ((2*M+1).ˆ2.*(2*N+1).ˆ2.*((2*M+1).ˆ2+...
24 gam*gam*(2*N+1).ˆ2))));
25

26 % Next, we calculate the flow in the middle of the channel
27

28 i=1;
29 z=0;
30 for y=−0.5:0.01:0.5 % in units of channel width
31 u(i)=sum(sum((−1).ˆM.*(−1).ˆN.*cos(pi*(2*M+1)*y).*...
32 cos(pi*(2*N+1)*z)./((2*M+1).*(2*N+1).*((2*M+1).ˆ2+...
33 gam*gam*(2*N+1).ˆ2))));
34 i=i+1;
35 end
36 u=u/ubar2; % Normalize u to get the correct mean velocity
37

38 % Display the flow speed
39 y=−0.5:0.01:0.5;
40 plot(y,u); % Plot it
41 xlabel('y / b');
42 ylabel('Flow speed u / (m/s)');
43

44 % Next, we calculate the shear at the bottom of the channel
45

46 i=1;
47 z=0;
48 for y=−0.5:0.01:0.5
49 stress(i)=(pi/a)*sum(sum((−1).ˆM.*cos(pi*(2*M+1)*y)./...
50 ((2*M+1).*((2*M+1).ˆ2+gam*gam*(2*N+1).ˆ2))));
51 i=i+1;
52 end
53 stress=visc*stress/ubar2;
54

55 % Display the shear
56 figure
57 y=−0.5:0.01:0.5;
58 plot(y,stress);
59 xlabel('y / b');
60 ylabel('Wall shear stress \tau / Pa');
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6.2 Calculating Taylor-Aris switching times

1 % −−−−−−−−−−−−−−−−− switchTimeExample.m −−−−−−−−−−−−−−−−−−−−%
2 % %
3 % This script demonstrates how to calculate the Taylor−Aris %
4 % switching time for valve based systems, linear regime and %
5 % saturating regime flow photolysis systems. %
6 % %
7 % Note that all lengths are in units of eta K = K/u, and %
8 % all times are in units of tau K = K/uˆ2 %
9 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %

10

11

12 l = 30; % The distance from the cell to the uncaging light (or valve)
13 L = 20; % The length of the uncaging region (for the linear case)
14

15 % First example is the valve based switching
16 t1 = fzero(@(t) (valveSwitchC(l,t)−0.05),l);
17 t2 = fzero(@(t) (valveSwitchC(l,t)−0.95),l);
18 swT1=t2−t1
19

20 % The next example is the linear regime photolysis
21 t1 = fzero(@(t) (LowIntensityC(L,l,t)−0.05),L,l);
22 t2 = fzero(@(t) (LowIntensityC(L,l,t)−0.95),L,l);
23 swT2=t2−t1
24

25 % The last example is the saturating regime photolysis
26 t1 = fzero(@(t) (HighIntensityC(l,t)−0.05),l);
27 t2 = fzero(@(t) (HighIntensityC(l,t)−0.95),l);
28 swT3=t2−t1

1 function y = valveSwitchC(x,t)
2 %Deal with problematic nonpositive t's
3 t=t.*(t>0);
4 t=t+(t≤0)*1e−50;
5

6 y = 0.5*erfc((x−t)./(2*sqrt(t)));

1 function y = LowIntensityC(L,x,t)
2 %Deal with problematic nonpositive t's
3 t=t.*(t>0);
4 t=t+(t≤0)*1e−50;
5 %High Intensity Uncaging concentration
6 y = quad(@(tau)(0.5*(erf((t−x−tau)./(2*sqrt(t−tau)))+...
7 erf((L−t+x+tau)./(2*sqrt(t−tau))))),0,t)/L;

1 function y = HighIntensityC(x,t)
2 %Deal with problematic nonpositive t's
3 t=t.*(t>0);
4 t=t+(t≤0)*1e−50;
5 %High Intensity Uncaging concentration
6 y = 0.5*exp(x/2).*(exp(x/2).*erfc((x+t)./(2*sqrt(t)))+...
7 exp(−x/2).*erfc((x−t)./(2*sqrt(t))));
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