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Summary of Model. A summary of the combined geometric/computational fluid dynamics 13 

(CFD) model is presented here, and additional details may be found in a previous publication.1 14 

The inlet and outlet reservoirs in this study, as well as in most LOC devices, have a length scale 15 

such that D1, D2 < 3 mm. For these systems, the Bond number can be calculated as 16 

< 1, such that surface tension forces dominant gravitational forces and it may be 17 

assumed that R1 and R2, the principal radii of curvature of an air/liquid interface, are not 18 

dependent on interfacial position. A stable open air/liquid meniscus situated in a reservoir can 19 

exist in either a complete or incomplete state, as shown in Fig. 2. The angles θ1 and θ2 are 20 

defined as the apparent contact angles between the reservoir floor and sidewalls, respectively. 21 

For a complete meniscus, the center of curvature is located at a point , and it follows that 22 

R1 = R2. An incomplete meniscus has a primary radius of curvature R1 extending from a point 23 

 to the meniscus in the r,z-plane, and a secondary radius of curvature R2 extending from 24 

the line r = 0 to the average radial position of the meniscus in the r,θ-plane. An incomplete 25 

meniscus will exist in a stable form as shown in Fig. 2 when , where 2α is the 26 

angle of intersection between the reservoir floor and sidewalls. There are two critical liquid 27 
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volumes at which the meniscus undergoes a discontinuous transition from a complete to 1 

incomplete state or vice versa. At a critical volume Vca, the meniscus transition from a complete 2 

to incomplete state occurs under conditions such that and the lowermost position of 3 

the air/liquid interface reaches the floor of the reservoir (zo = R1). At a critical volume Vcb, the 4 

meniscus transition from an incomplete to a complete state occurs conditions such that 5 

 where the distance between and the position of the inner contact line approaches 6 

zero.  7 

A simple model has been developed to calculate R1, R2, ro, and zo in a micro-reservoir, given 8 

values of D1, D2, H, θ1, θ2, and V. The shape of a meniscus situated in a reservoir may be 9 

estimated as a line of constant curvature R1 symmetric along the z-axis intersecting the reservoir 10 

floor and sidewalls with θ1 and θ2, respectively. For specific values of R1, the liquid volume V 11 

can then be calculated by integrating between the meniscus and the reservoir boundaries with 12 

respect to r, z, and θ. Relationships of R1 versus V can then be used iteratively to calculate the 13 

shape of a meniscus given V for a reservoir with dimensions D1, D2, and H, and contact angles 14 

θ1, and θ2. 15 

Calculated values of R1, R2, ro, and zo can then be used, together with knowledge of the 16 

temperature (T) and relative humidity (RH) for a system, to calculate instantaneous values of Qe. 17 

Values of Qe are calculated under the assumptions that the system is isothermal and isobaric, the 18 

gas phase within the reservoir is quiescent, and the mass fraction of water vapor is constant both 19 

along both the meniscus (xa1) and the top of the reservoir at (xa2), where xa1 can be 20 

calculated from Raoult’s law and . For a given reservoir geometry, a minimum 21 

of 25 CFD simulations are used to solve the steady-state diffusion equation for the mass fraction 22 

of water vapor in the gas phase to obtain solutions of xa = xa(r, z), where each simulation pertains 23 
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to a different liquid volume V. For each simulation the instantaneous evaporation rate can be 1 

calculated as 2 

  

€ 

Qe =
−pMwD
ρRT

∂xa

∂ ˆ n A
∫ dA ,                                                                 (1s)                                                                 3 

Where Mw is the molecular weight of water, D = D(T) is the binary diffusion coefficient of water 4 

vapor in air, R is the ideal gas constant, and A is the cross sectional area of integration normal 5 

to . Discrete values of Qe versus V from individual CFD simulations are then fit to the 6 

following relationships: 7 

Complete meniscus                                                     (2s) 8 

Incomplete meniscus                                        (3s) 9 

where Vres is the total reservoir volume and the constants a1, a2, a3, b1, b2, and b3 are determined 10 

via (non)linear regression. The fits to discrete Qe versus V data via Eqns. (2s) and (3s) result in 11 

values of R2 > 0.98 for all cases.  12 

Meniscus shape. Figure S1A displays calculated values of R1 and R2 for several reservoirs with 13 

varying upper and lower diameters, H = 2.0 mm, and contact angles θ1 = 4° (glass) and θ2 = 18° 14 

(oxidized PDMS), typical of experimental values in this study. Because these reservoirs contract 15 

in area as z increases (D2 < D1), the magnitude of R1 (=R2) will increase as V decreases for V > 16 

Vca for complete menisci, where the opposite is true for expanding reservoirs (D1 < D2). When 17 

evaporation causes the liquid volume in the reservoir to reach V = Vca, the meniscus will rupture 18 

into an incomplete state due to the discontinuity between the initial air/liquid and eventual 19 

solid/liquid surface energies. For all reservoirs, values of R1 and R2 asymptote to zero and , 20 

respectively, as the liquid volume V approaches zero, where in the limit V → 0 for all 21 

reservoirs, as seen in Fig. S1A. The Laplace pressure for menisci in reservoirs with low V will 22 

Supplementary Material (ESI) for Lab on a Chip
This journal is (C) The Royal Society of Chemistry 2009



 4 

thus scale as . Because the liquid pressure pl in these reservoirs will be below 1 

atmospheric pressure—consistent with Eqn. (4)—flow in a common µFN connected by multiple 2 

reservoirs will always have flow directed toward the reservoir with smallest liquid volume, 3 

provided the meniscus in that reservoir is incomplete. The dependence of R1 and R2 on V is 4 

complicated and cannot be captured with simple analytical expressions. For incomplete menisci, 5 

R1 will decrease with decreasing θ1 and θ2, and increasing D1 for a given value of V, seen in Fig. 6 

S1A.  7 

 8 

 9 

Figure S1. (A) The two primary radii of curvature, R1 (black, thick line) and R2 (red, thin line), plotted as a 10 
function of the liquid volume V contained in reservoirs with H = 2.0 mm and varying diameters. (B) Qf vs. V 11 
calculated from Eqn. (2) for microchannels with h = 25 µm and varying width connected to an outlet reservoir 12 
with D1 = 2.15 mm, D2 = 1.65 mm, and H = 2.0 mm where the capillary forces associated with the inlet 13 
reservoir were neglected. 14 

 15 

Considering a situation where a very large reservoir (negligible capillary forces) with 16 

arbitrarily large capacity feeds an outlet reservoir with a stable outlet meniscus with liquid 17 

volume V similar to that shown in Fig. 1B, one can solve for the instantaneous flow rates through 18 

the microchannel as a function of outlet reservoir liquid volume V by substituting Eqns. (3) and 19 

(4) into Eqn. (2). Figure S1B plots instantaneous values of Qf as a function of V in this situation 20 

for three microchannels of different width. At the critical volume Vcb = 1.23 µL, the meniscus 21 
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transitions from an incomplete to a complete state and values of Qf drop due to the sudden 1 

increase in R2, as shown in Fig. 1A. For values of  µL, the volumetric flow rate 2 

increases rapidly, scaling as , which is consistent with the results shown in Fig. S1A. 3 

When the liquid volume is held constant, Qf increases rapidly with increasing w, consistent with 4 

Eqns. (2) and (4). 5 

Evaporation rate. The dependence of the evaporation rate on reservoir volume and contact 6 

angle is discussed in a previous study.1 Although not shown here, there is a strong dependence of 7 

Qe on θ2 at large values of V, such that Qe increases with decreasing θ2 due to the increase in the 8 

interfacial area and average z-position of the meniscus. The dependence of Qe on θ1 and θ2 is 9 

reduced substantially as V → 0.  10 

 11 

 12 
Figure S2. (A) Evaporation rate as a function of the normalized liquid reservoir volume for several cylindrical 13 
reservoir diameters with H = 1.0 mm. The symbols represent individual CFD simulations and the lines represent fits 14 
to Eqn. (3s). (B) Evaporation rate as a function of the reservoir diameter for reservoirs with H = 1.0 and 2.0 mm and 15 

. The solid lines represent linear and quadratic fits to individual CFD simulations. Both figures pertain to 16 
reservoirs with D1 = D2 and external conditions of T = 25 °C and RH = 0.2. 17 
 18 

In this study the focus is on the conditions typically associated with an outlet reservoir, where 19 

liquid volumes are below 0.1 µL and the meniscus exists in an incomplete state. Figure S2A 20 
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illustrates the evaporation rate as a function of  in reservoirs with height H = 1.0 mm for 1 

several diameters with the constraint D1 = D2. It can be seen that the dependence of Qe on V is 2 

very weak as V → 0 and D1→ 0. These results suggest that the overall diameter of the reservoir 3 

will have a significant effect on the overall flow rate of systems utilizing this passive pumping 4 

mechanism, provided that . Figure S2B displays the dependence of Qe on the 5 

reservoir diameter (for cylindrical reservoirs) for systems with H = 1.0 and 2.0 mm. For all cases, 6 

Qe increases with D1; however, for smaller values of D1, , while  for larger values 7 

of D1, with the transition between the two scaling rates occurring at . This difference 8 

in scaling rates can be explained by examining the case for steady-state diffusion in a cylinder of 9 

diameter D1 and height H with a small amount of water present along the bottom perimeter of the 10 

cylinder. In this case the mass fraction of water obeys , with the bottom corner of the 11 

reservoir acting as a point source , along with no flux conditions  12 

along the boundaries and . For the limiting case « 1, the upper wall acts as a 13 

sink such that , and the solution will resemble one-dimensional diffusion such 14 

that  and , thus Qe will scale with the reservoir height 15 

as . Furthermore, the differential area dA in Eqn. (1s) can be calculated along a plane of 16 

constant-z, thus . Conversely, for systems where » 1, the system resembles 17 

diffusion from a thin ring of diameter D1 into a semi-infinite medium. In this limiting case the 18 

evaporation rate will scale as the circumference of the meniscus, such that , which is 19 

consistent with several experimental studies concerning the evaporation rate from shallow 20 

wells.2, 3 This scaling law can also be derived by examining the analogous situation regarding the 21 

electrical potential distribution due to a uniformly charged circular ring of diameter D1.4 These 22 
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two scaling laws are valid for all reservoirs where  and provide a good 1 

approximation for reservoirs with non-cylindrical geometries. 2 

Prediction of time-dependent flow. Based on the results shown in Fig. S2, it is expected that 3 

both the geometries of the outlet reservoir and microchannel will control values of Qf observed in 4 

laboratory systems consisting of a microchannel connecting inlet/outlet reservoirs composed of 5 

PDMS sidewalls and a glass floor. To predict the time-dependent flow occurring in these 6 

systems Eqn. (1) can be discretized using a first-order difference method as 7 

,                                                           (4s) 8 

where  is the liquid volume in a given reservoir at time t = nΔt. Given the shape of a meniscus 9 

in a reservoir, the evaporation rate  can be calculated using Eqn. (2s) or (3s) and 10 

Qperm can be calculated using the liquid/PDMS interfacial area determined by the geometric 11 

model and a permeation flux of J = 7×10-6 kg m-2 s-1 taken from the experimental measurements 12 

of Randall et al. 5. Using Eqns. (2), (3), and (4), can be calculated using the 13 

relationship 14 

 .                         (5s) 15 

Predictions of v(t) were obtained by solving Eqn. (4s) for both reservoirs with a time step of Δt = 16 

0.1 s, where at each time step values of , , and  were calculated from  and . 17 

Because the tracer bead solutions used here are stabilized with a surfactant (tween-20) at a 18 

concentration of Cs = 1.5×10-7 M, decreases in both γ, θ1, and θ2 are expected over time as the 19 

surfactant concentration increases in both reservoirs due to evaporative effects. The surfactant 20 

concentration in the reservoirs can be calculated utilizing Eqn. (4s) along with 21 
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 ,                                                        (6s) 1 

where Ms is the molar mass of surfactant in each reservoir. From the results of Niño et al.,6 2 

changes in the interfacial tension with surfactant concentration can be accounted for 3 

via  for the range 4×10-7 M < Cs < Cs,crit, where = -21.6 g s-2 and = -65.8 4 

g s-2; = 73 g s-2 for the range Cs < 4×10-7 M; and = 33 g s-2 for the range Cs > Cs,crit, where the 5 

critical micelle concentration (CMC) for tween-20 in water is Cs,crit =  2.5×10-5 M. For the outlet 6 

reservoir, Cs is predicted to exceed the CMC in the outlet reservoir within 30 seconds for all 7 

cases in this study, after which γout, θ1,out and θ2,out are not expected to change over time.  8 

Laboratory measurements of the contact angles for the reservoir floor and sidewalls are 9 

accomplished utilizing the techniques developed in a previous study.1 Briefly, this measurement 10 

is done by observing the position of the inner contact line along the floor of a reservoir over time 11 

as the effects of evaporation reduce the liquid volume in a reservoir with known geometry. An 12 

iterative process matching laboratory observations to predictions from the geometric model of 13 

the contact line position then provides accurate values of θ1 and θ2 for a wide range of reservoir 14 

geometries and external conditions. For aqueous solutions with surfactant concentrations well 15 

above the CMC of Cs = 8×10-5 M, the contact angles for the outlet reservoir were measured to be 16 

θ1,out = 4.2 ± 1.0° and θ2,out = 18.2 ± 2.5°. In contrast, for dilute aqueous solutions with Cs = 17 

1.5×10-7 M, contact angles were θ1,in = 13 ± 5.4° and θ2,in = 49.6 ± 4.7°. These values are used as 18 

inputs to the geometric model discussed above to establish predictions for R1 and R2 as a function 19 

of Vout. Because the capillary forces associated with the inlet reservoir are small (R1,in,R2,in  » 20 

R1,out) and Cs,in does not increase appreciably until close to reservoir dry out, it is reasonable to 21 

neglect variations in θ1,in and θ2,in with time.  22 
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Regarding variation of Qe with temperature, values of T and RH are measured at the onset and 1 

completion of an experiment. For predictive reasons it is assumed that any changes are linear 2 

with time and values of Qe are calculated accordingly. With respect to the environment 3 

surrounding the reservoir, according to Eqn. (1s) the evaporation rate scales as  

€ 

Qe ∝ xa1DT
−1, 4 

independent of the reservoir volume.     5 

 6 
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