Electronic Supplementary Information for:

Co-Axial Capillaries Microfluidic Device for Synthesizing Size- and Morphology-Controlled Polymer Core-Polymer Shell Particles

⁵ Zhenqi Chang¹, Christophe A. Serra¹*, Michel Bouquey¹, Laurent Prat² and Georges Hadziioannou¹

Operating conditions:

Fig. 2: Top, $Q_I = 0.0012 \text{ mL.min}^{-1}$; $Q_M = 0.005 \text{ mL.min}^{-1}$; $Q_O = 0.06 \text{ mL.min}^{-1}$. Bottom, $Q_I = 0.0035 \text{ mL.min}^{-1}$; $Q_M = 0.004 \text{ mL.min}^{-1}$; $Q_O = 0.05 \text{ mL.min}^{-1}$. Prepared in system I.

Fig. 3: (a) $Q_0 = 0.07 \text{ mL.min}^{-1}$ and $Q_M = 0.005 \text{ mL.min}^{-1}$ in microfluidic system I; $Q_0 = 0.06 \text{ mL.min}^{-1}$ and $Q_M = 0.005 \text{ mL.min}^{-1}$ in microfluidic system I; $\mu_0 = 1500 \text{ cP}$; (b) $Q_0 = 0.07 \text{ mL.min}^{-1}$ and $Q_I = 0.0012 \text{ mL.min}^{-1}$ in microfluidic system I; $Q_0 = 0.06 \text{ mL.min}^{-1}$ and $Q_I = 0.0032 \text{ mL.min}^{-1}$ in microfluidic system II; $\mu_0 = 1500 \text{ cP}$; (c) $Q_M = 0.005 \text{ mL.min}^{-1}$ and $Q_I = 0.0012 \text{ mL.min}^{-1}$ and $Q_I = 0.0012 \text{ mL.min}^{-1}$ in microfluidic system I; $Q_0 = 0.07 \text{ mL.min}^{-1}$ in microfluidic system I; $Q_0 = 0.07 \text{ mL.min}^{-1}$ in microfluidic system I; $\mu_0 = 1500 \text{ cP}$; (c) $Q_M = 0.005 \text{ mL.min}^{-1}$ and $Q_I = 0.0012 \text{ mL.min}^{-1}$ in microfluidic system I; $\mu_0 = 1500 \text{ cP}$; (d) $Q_0 = 0.07 \text{ mL.min}^{-1}$ in microfluidic system II; $\mu_0 = 1500 \text{ cP}$; (d) $Q_0 = 0.07 \text{ mL.min}^{-1}$ in microfluidic system II; $\mu_0 = 1500 \text{ cP}$; (d) $Q_0 = 0.07 \text{ mL.min}^{-1}$ in microfluidic system II; $\mu_0 = 1500 \text{ cP}$; (d) $Q_0 = 0.07 \text{ mL.min}^{-1}$ in microfluidic system II; $\mu_0 = 1500 \text{ cP}$; (d) $Q_0 = 0.07 \text{ mL.min}^{-1}$ in microfluidic system II; $\mu_0 = 1500 \text{ cP}$; (d) $Q_0 = 0.07 \text{ mL.min}^{-1}$ in microfluidic system II; $\mu_0 = 1500 \text{ cP}$; (d) $Q_0 = 0.07 \text{ mL.min}^{-1}$ in microfluidic system II; $\mu_0 = 1500 \text{ cP}$; (d) $Q_0 = 0.07 \text{ mL.min}^{-1}$ in microfluidic system II; $\mu_0 = 1500 \text{ cP}$; (d) $Q_0 = 0.07 \text{ mL.min}^{-1}$ in microfluidic system II; $\mu_0 = 1500 \text{ cP}$; (d) $Q_0 = 0.07 \text{ mL.min}^{-1}$ microfluidic system II; $\mu_0 = 1500 \text{ cP}$; (d) $Q_0 = 0.07 \text{ mL.min}^{-1}$ microfluidic system II; $\mu_0 = 1500 \text{ cP}$; (d) $Q_0 = 0.07 \text{ mL.min}^{-1}$ microfluidic system II; $\mu_0 = 1500 \text{ cP}$; (d) $Q_0 = 0.07 \text{ mL.min}^{-1}$ microfluidic system I microfluidic

mL.min⁻¹, $Q_M = 0.005$ mL.min⁻¹ and $Q_I = 0.0012$ mL.min⁻¹ in microfluidic system I; $Q_O = 0.06$ mL.min⁻¹, $Q_M = 0.005$ mL.min⁻¹ and $Q_I = 0.0012$ mL.min⁻¹ in microfluidic system I; $Q_O = 0.06$ mL.min⁻¹, $Q_M = 0.005$ mL.min⁻¹ and $Q_I = 0.0032$ mL.min⁻¹ in microfluidic system II; $\mu_O = 1500$ cP.

Fig. 5: $\mu_0 = 1500 \text{ cP}$, $Q_0 = 0.07 \text{ mL.min}^{-1}$; $Q_M = 0.006 \text{ mL.min}^{-1}$; $Q_I = 0.004 \text{ mL.min}^{-1}(a,a')$; $Q_I = 0.0006 \text{ mL.min}^{-1}(b,b')$; $Q_I = 200,0008 \text{ mL.min}^{-1}(c,c')$ in microfluidic system I, $\Delta = -650 \mu \text{m}$.

		System I		System II			System III			System IV			System V			System VI			
		Inner diameter	Outer diameter	Material	Inner diameter	Outer diameter	Material	Inner diameter	Outer diameter	Material	Inner diameter	Outer diameter	Material	Inner diameter	Outer diameter	Material	Inner diameter	Outer diameter	Material
Cappilary size	Inner capillary	20 µm	90 µm	Glass	75 µm	360 µm	PEEK	100 µm	165 µm	Glass	150 μm	360 µm	PEEK	100 µm	360 µm	PEEK	100 µm	165 µm	Glass
	Middle capillary	150 μm	360 µm	PEEK	700 µm	850 μm	Glass	300 µm	760 μm	PTFE	700 µm	850 μm	Glass	530 µm	670 μm	Glass	250 µm	360 µm	Glass
	Outlet tubing	1600 µm	3200 µm	PTFE	1600 µm	3200 µm	PTFE	1600 µm	3200 µm	PTFE	1600 µm	3200 µm	PTFE	1600 µm	3200 µm	PTFE	1600 µm	3200 µm	PTFE
Inner fluid phase		acrylamide, 10 wt %; NN'- methylene-bisacrylamide, 1.5 wt %; Ammonium persulfate, 0.15 wt			acrylamide, 10 wt %; NN'- methylene-bisacrylamide, 1.5 wt t %; Ammonium persulfate, 0.15 wt			acrylamide, 10 wt %; NN'- methylene-bisacrylamide, 1.5 wt %; Ammonium persulfate, 0.15 wt		acrylamide, 10 wt %; NN'- methylene-bisacrylamide, 1.5 wt %; Ammonium persulfate, 0.15 wt		acrylamide, 10 wt %; NN'- methylene-bisacrylamide, 1.5 wt %; Ammonium persulfate, 0.15 wt		distilled water					
		viscosity: 1.45 cP			viscosity: 1.45 cP			viscosity: 1.45 cP			viscosity: 1.45 cP			viscosity: 1.45 cP			viscosity: 0.98 cP		
Middle fluid phase		tripropylenglykol-diacrylate, 93 wt %; Span80, 3.5% 1- hydroxycyciohexyl phenyl ketone, viscosity: 14.2 cP			tripropylenglykol-diacrylate, 93 wt %; Span80, 3.5% 1- hydroxycyciohexyl phenyl ketone, viscosity: 14.2 cP		tripropylenglykol-diacrylate, 93 wt %; Span80, 3.5% 1- hydroxycyciohexyl phenyl ketone, viscosity: 14.2 cP		tripropylenglykol-diacrylate, 93 wt %; Span80, 3.5% 1- hydroxycyciohexyl phenyl ketone, viscosity: 14.2 cP		tripropylenglykol-diacrylate, 93 wt %; Span80, 3.5% 1- hydroxycyciohexyl phenyl ketone, viscosity: 14.2 cP		tripropylenglykol-diacrylate, 93 wt %; Span80, 3.5% 1- hydroxycyciohexyl phenyl ketone, viscosity: 14.2 cP						
Outer fluid phase		aqueous solution of methyl cellulose			aqueous solution of methyl cellulose			aqueous solution of methyl cellulose		aqueous solution of methyl cellulose		aqueous solution of methyl cellulose		aqueous solution of methyl cellulose					
		No.	viscos	ity (cP)	No.	viscos	ity (cP)	No.	viscos	ity (cP)	No.	viscos	ity (cP)	No.	viscos	ity (cP)	No.	viscos	ity (cP)
		1	5	00	1	5	00	1	13	300	1	13	00	1	13	300	1	13	00
		2	8	00	2	8	00	-		-	-		-	-		-	-		-
		3	11	100	3	11	00	-		-	-		-	-		-	-		-
		4	14	100	4	14	100	-		-	-		-	-		-	-		-
		5	16	500	5	16	500	-		-	-		-	-		-	-		-
		6	20	000	6	20	000	-		-	-		-	-		-	-		-

 Table ESI.1 Sizes of the capillaries and experimental materials

Crowh	Data symbol									
Graph	•	0	*	▲	Δ					
3a	12.65	9.09	12.87	8.33	7.14	8.69				
3b	11.77	10.52	11.08	5.45	9.36	9.33				
3c	13.21	9.74	10.39	10.02	7.77	9.91				
3d	10.63	13.92	11.6	7.38	6.64	6.37				

Table ESI 2. Maximum standard errors (SEmax	, given in µm) of experimental	data plotted in Figure 3
---	--------------------------------	--------------------------

Fig. ESI.1 Variation of the core droplet diameter with respect to the outer fluid flow rate at constant Q_0/Q_M .

Fig. ESI.2 Comparison between theoretical (th) and experimental (exp) core droplet diameter for the 5 systems tested. Solid line represents the first bisector.

Fig. ESI.3 Snapshots of the formation of core-shell droplets for different positive capillaries' tips relative position, Δ =0 (A,A'); Δ =146 µm (B,B'); Δ =360 µm (C,C'); Δ =480 µm (D,D'). Experimental conditions: Q₀ = 0.07 mL.min⁻¹; Q_M = 0.006 mL.min⁻¹; Q_I = 0.0012 mL.min⁻¹ in microfluidic system I, $\mu_0 = 1500$ cP.

Fig. ESI.4 Optical microscopy images of the multiple core droplet formation in a co-axial capillaries microfluidic device with a negative capillaries' tips relative position (top) and the multiple poly(acrylamide) core-poly(tripropylenglycol-diacrylate) shell particles obtained (bottom), core being labeled with ⁵ an acqueous dye (Nigrosin, Aldrich). Experimental conditions: $\mu_0 = 1500 \text{ cP}$, $Q_0 = 0.07 \text{ mL.min}^{-1}$; $Q_M = 0.006 \text{ mL.min}^{-1}$; $Q_I = 0.004 \text{ mL.min}^{-1}$ (a,a'); $Q_I = 0.0006 \text{ mL.min}^{-1}$ (b,b'); $Q_I = 0.0008 \text{ mL.min}^{-1}$ (c,c') in microfluidic system I, $\Delta = -650 \mu \text{m}$.

Fig. ESI.5 Effects of the inner and middle fluid flow rates on the length of rod-like polymer particles obtained with microfluidic system VI ($Q_1 = 0.0023$ mL.min⁻¹ when Q_M is varying from 0.0001 mL.min⁻¹ to 0.006 mL.min⁻¹; $Q_M = 0.0045$ mL.min⁻¹ when Q_1 is varying from 0.0025 mL.min⁻¹ to 0.014 mL.min⁻¹; $Q_0 = 0.05$ mL.min⁻¹).

Fig. ESI.6 Variations of the length of rod-like polymer particles with respect to the ratio between the middle and inner fluid flow rates. Solid line is derived from equation 4.