1 Supplemental Material

1.1 Dataevaluation

Determination of the measured pressure

The wall movement in the midplane of the channel (z= 0.5h) was determined by
tracking the tracer particles embedded in the PDMS with the custom made software
OpenBox®. Approximately 80 beads within the first 30 um to the wall were tracked
and averaged over 3 oscillation periods on each side of the channel to obtain the lateral
motion Yiet, Yright ON each side of the channel. The strain ¢ of the PDMS is related to
the periodic wall movement Y (x,t) = 0.5(Yeft — Yright) — Yo(p = 0) via a geometrical
factor € = fgeomY /W, Where w is the lateral channel width. fgeom Was determinedin a
FEM-simulation (Multiphysics, COMSOL) for a channel (w x h = 60 x 80um?) with
a1000 x 1000 x 80 um? inlet section and has a constant value of fgeom ~ 0.95 except
within the first 2mm next to the channel entrance and exit (see Fig. 5b).

Thepressurefor each Fourier component of thestraine(x,t) = X7_g &n(X) exp[i (@nt + ¢n)]
can now be calculated with the complex shear modulus G*(w) using the Poisson ratio
of 0.5for PDMS

Pn(X,t) = 3|G*(@n)| - enexpli(ont + ¢n — & (wn))] (S1)

wheretané (o) = G"(w)/G (®) and wn = nawp . G* (@) was measured with an AR-G2
(TA-Instruments, Delaware) oscillatory rheometer with a2° cone-plate geometry for a
constant strain € = 0.1% (see Fig. 6). The pressure pulse can then be computed directly
from the wall movement Y (x,t) = o Ynexp[i(ont + @n)] with:

p(X,t) _ z 3‘6*(%” fg\j.\'ljmyn(xyt)ei(wnﬂr(ﬂn*&wn)) (S2)
n=0

Computation of the flowrate

A self-written Particle Image Velocimetry (PIV) algorithm was used to extract the
flowrate. The channel region of the videos was divided into 11 stripes which were
correlated frame by frame, and three oscillation periods were averaged to yield the
velocity v(x,t) in one period. A parabolic fit over the obtained flow profile was used
to extract the maximum velocity Vimax(X,t) in the middle of the channel for each frame.
The flowrates Q were then cal culated from Viyax for w < h?:

n—1
oo (=) 2z 1
Vmax 48 zn,odd n3 [l_cosh(nnz\ﬂ,v) (S3)
Q n3hw 1—0.63%'

The flowrate curves Q differ less than 5% from their steady state values Qs s, at the
end of haf the period of the driving oscillation To/2 = n/wo = 1s. The steady state
flowrate has to be equal at all channel positions — yet the measured steady state max-
imum velocities vary up to 20%, possibly due to local inhomogeneitiesin the channel
geometry and variations in the z-position. To account for these sources of uncertainty
the absolut values of the velocity curves were scaled to yield matching steady state
flowrates Qs for the different channel positions (shown in Fig. 3b), which does not
ater the shape of the flowrate pulses and the frequency dependencies discussed.
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Figure5: FEM-simulationsto determine fgeom and Kgeom. (8) Channel expansion corre-
sponding to € = 0.01 in cross-section of PDMS channel. For clarity the wall displace-
ment has been 20x enlarged. (b) Wall displacement Y(z = h/2) along the channel.
Near the channel entrance at x = 0 the expansion of the channel is higher than inside
the channel. The green box showsthe arearecordedin thevideofor Y (x=0),Q(x=0).

1.2 Calculation of theoretical curves

All theoretical curves were computed using the measured pressure at x = 0. Solving
eq. (2) for x = 7.5, 12.5 and 17.5 mm gives theoretical curvesfor p and Q along the
channel. The parameters Zy() and Ry were determined as described in the following.
Determination of Zy(w):
The complex susceptibility of the PDMS walls Zx(w) = & + % was determined
from adapting a Maxwell body. The hydrodynamic capacitance of the channel C ()
is proportional to the strain, the channel cross-section and a geometric factor K geom:

_ _ kgeomwhe
(o) = 5 Tana

The phase difference of o between p and ¢ is adjusted to the measured phasedif-
ferencetan = tana = wCx/gx and eg. (S2) gives for each Fourier-component pp:

kgeomthfn
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|pn| =

: _ Cxo _ onCx o : _ kgeomwh

simulation (Fig. 5a) suggests a geometrical factor kgeom = 2.4. The best accordance
with the experimental datawas achieved with Kgeom = 2.0, which has been used for the
theoretical calculations.

Determination of hydrodynamic resistance Ry:

The hydrodynamic resistance per unit length Ry for a rectangular channel filled
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Figure 6: Oscillatory rheometer measurement of the complex shear modulus G* =
G’ +iG" of PDMS with phase angle 6 between stress and strain.

with fluid of viscosity i for w < his given by 2:

R~ 221 (1—0.63V—V)_1. (S5)

w3h h

The changes of the channel cross-section due to the applied pressure in the experiment
are small (< 3%), thus the resistance can be assumed to be independent of the applied
pressure Ry = const. Especially in shallow channels and at higher operating pressures
the dependence of the hydrodynamic resistance Ry(p(x)) on the pressure can be quite
significant and has to be considered 34,

Determination of hydrodynamic inductance L y:

The hydrodynamic inductance per unit length L« for a circular tube with cross-
sectional areaAis givenas Ly = p /Awhere p isthefluid density . For the theoretical
curvesLy = p /Awas used for the rectangular channel with A= wh using afluid density
of p=1.2gcm3.

Determination of fluid viscosity n:

A consistent value for the viscosity 11 can be extracted from the periodic measure-
ment in the channel itself: Since wp < weytoff, P and Q at the end of the period of the
step pulses are good estimates for the steady state values ps s, and Qs s, in constant flow.
The overall resistance of the channel Ryl has to fulfill the equation Ryl = £ which

- QS.S.
directly sets an experimental value for the viscosity of
Pss. hw h
= —_(1-063—
1= 0l 12 ( 0 63w) (S6)

Calculation of phase velocity Vpn(on):

To calculate the phase velocity of the pressure propagation we eval uate the phase
difference ACDSin of the Fourier component of the pressure pn(wn) between the chan-
nel entrance x = 0 and position x = x;. From there we can determine the apparent phase



velocity vpn(mn) with which a point with agiven phase of py, travels along the channel
6.

d(ADDP,
Vph(on, %) = —wn/((T?X'))

To enable a comparison with the experimental data, we define an average phase ve-
locity Vph(wn) for the propagation from the channel entrance x = 0 to x = x; by re-
placing d(A®g*, )/dx with the phase difference and the traveled distance Ax = xi:
Von(@n, %) = —X; %/A@Sfxi . Inthe low frequency limit @ < ®cyoft the viscous dissi-
pation of the PDMS channel wall is negligible (6 = 0) and we obtain a phase velacity
of Vph(Xi) = f_i)g and an average phase velocity Vo (on) (0 — Xi): Von(Xi) = Z?L_; which
are independent of the frequency but dependent on the x-position along the channel.
For high frequencies @ >> wcyoff With 8 ~ 0 we get a phase velocity of

_ 20D
Vpn(n) = Vpn(en) = \/ cosﬁ(ln—;nS)

which isindependent of x; and thus equal to the averaged phase vel ocity.

(S7)
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