
1 Supplemental Material

1.1 Data evaluation

Determination of the measured pressure
The wall movement in the midplane of the channel (z = 0.5h) was determined by

tracking the tracer particles embedded in the PDMS with the custom made software
OpenBox1. Approximately 80 beads within the first 30 µm to the wall were tracked
and averaged over 3 oscillation periods on each side of the channel to obtain the lateral
motion Yleft,Yright on each side of the channel. The strain ε of the PDMS is related to
the periodic wall movement Y (x,t) = 0.5(Yleft −Yright)−Y0(p = 0) via a geometrical
factor ε = fgeomY/w, where w is the lateral channel width. fgeom was determined in a
FEM-simulation (Multiphysics, COMSOL) for a channel (w x h = 60 x 80 µm 2) with
a 1000 x 1000 x 80 µm3 inlet section and has a constant value of fgeom ≈ 0.95 except
within the first 1mm next to the channel entrance and exit (see Fig. 5b).

The pressure for each Fourier component of the strain ε(x, t)= ∑∞
n=0 εn(x)exp [i(ωnt + ϕn)]

can now be calculated with the complex shear modulus G ∗(ω) using the Poisson ratio
of 0.5 for PDMS

pn(x,t) = 3|G∗(ωn)| · εn exp[i(ωnt + ϕn− δ (ωn))] (S1)

where tanδ (ω) = G′′(ω)/G′(ω) and ωn ≡ nω0 . G∗(ω) was measured with an AR-G2
(TA-Instruments, Delaware) oscillatory rheometer with a 2 ◦ cone-plate geometry for a
constant strain ε = 0.1% (see Fig. 6). The pressure pulse can then be computed directly
from the wall movement Y (x,t) = ∑∞

n=0Yn exp [i(ωnt + ϕn)] with:

p(x,t) =
∞

∑
n=0

3|G∗(ωn)| fgeom

w
Yn(x, t)ei(ωnt+ϕn−δ (ωn)) (S2)

Computation of the flowrate
A self-written Particle Image Velocimetry (PIV) algorithm was used to extract the

flowrate. The channel region of the videos was divided into 11 stripes which were
correlated frame by frame, and three oscillation periods were averaged to yield the
velocity v(x,t) in one period. A parabolic fit over the obtained flow profile was used
to extract the maximum velocity vmax(x, t) in the middle of the channel for each frame.
The flowrates Q were then calculated from vmax for w < h 2:

vmax

Q
=

48
π3hw

∑∞
n,odd

(−1)
n−1

2

n3

[
1− 1

cosh(nπ h
2w )

]
1−0.63 w

h

(S3)

The flowrate curves Q differ less than 5% from their steady state values Qs.s. at the
end of half the period of the driving oscillation T0/2 = π/ω0 = 1s. The steady state
flowrate has to be equal at all channel positions — yet the measured steady state max-
imum velocities vary up to 20%, possibly due to local inhomogeneities in the channel
geometry and variations in the z-position. To account for these sources of uncertainty
the absolut values of the velocity curves were scaled to yield matching steady state
flowrates Qs.s. for the different channel positions (shown in Fig. 3b), which does not
alter the shape of the flowrate pulses and the frequency dependencies discussed.
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Figure 5: FEM-simulations to determine fgeom and kgeom. (a) Channel expansion corre-
sponding to ε = 0.01 in cross-section of PDMS channel. For clarity the wall displace-
ment has been 20x enlarged. (b) Wall displacement Y (z = h/2) along the channel.
Near the channel entrance at x = 0 the expansion of the channel is higher than inside
the channel. The green box shows the area recorded in the video forY (x = 0),Q(x = 0).

1.2 Calculation of theoretical curves

All theoretical curves were computed using the measured pressure at x = 0. Solving
eq. (2) for x = 7.5, 12.5 and 17.5 mm gives theoretical curves for p and Q along the
channel. The parameters Zx(ω) and Rx were determined as described in the following.

Determination of Zx(ω):
The complex susceptibility of the PDMS walls Zx(ω) = 1

gx
+ 1

iωCx
was determined

from adapting a Maxwell body. The hydrodynamic capacitance of the channel C x(ω)
is proportional to the strain, the channel cross-section and a geometric factor k geom:

Cx(ω) = kgeomwhε
pn(1+i tanα)

The phase difference of α between p and ε is adjusted to the measured phasedif-
ference tanδ = tanα = ωCx/gx and eq. (S2) gives for each Fourier-component p n:

|pn| = kgeomwhεn

Cx cosδ
= 3|G∗|ε (S4)

i.e. Cx(ωn) = Cx,0
|G∗(ωn)/G∗

ω0
|cosδ and gx = ωnCx,0

|G∗(ωn)/G∗
ω0

|sinδ with Cx,0 = kgeomwh
3|G∗

ω0
| . The FEM-

simulation (Fig. 5a) suggests a geometrical factor kgeom = 2.4. The best accordance
with the experimental data was achieved with kgeom = 2.0, which has been used for the
theoretical calculations.

Determination of hydrodynamic resistance Rx:
The hydrodynamic resistance per unit length Rx for a rectangular channel filled
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Figure 6: Oscillatory rheometer measurement of the complex shear modulus G ∗ =
G′ + iG′′ of PDMS with phase angle δ between stress and strain.

with fluid of viscosity η for w < h is given by 2:

Rx ≈ 12η
w3h

(
1−0.63

w
h

)−1
. (S5)

The changes of the channel cross-section due to the applied pressure in the experiment
are small (< 3%), thus the resistance can be assumed to be independent of the applied
pressure Rx = const. Especially in shallow channels and at higher operating pressures
the dependence of the hydrodynamic resistance R x(p(x)) on the pressure can be quite
significant and has to be considered 3,4.

Determination of hydrodynamic inductance Lx:
The hydrodynamic inductance per unit length L x for a circular tube with cross-

sectional area A is given as Lx = ρ/A where ρ is the fluid density 5. For the theoretical
curves Lx = ρ/A was used for the rectangular channel with A = wh using a fluid density
of ρ = 1.2gcm−3.

Determination of fluid viscosity η:
A consistent value for the viscosity η can be extracted from the periodic measure-

ment in the channel itself: Since ω0 < ωcutoff, p and Q at the end of the period of the
step pulses are good estimates for the steady state values ps.s. and Qs.s. in constant flow.
The overall resistance of the channel Rxl has to fulfill the equation Rxl = ps.s.

Qs.s.
which

directly sets an experimental value for the viscosity of

η =
ps.s.

Qs.s.l
h3w
12

(
1−0.63

h
w

)
(S6)

Calculation of phase velocity vph(ωn):
To calculate the phase velocity of the pressure propagation we evaluate the phase

difference ∆Φn,p
0−xi

of the Fourier component of the pressure pn(ωn) between the chan-
nel entrance x = 0 and position x = xi. From there we can determine the apparent phase
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velocity vph(ωn) with which a point with a given phase of pn travels along the channel
6:

vph(ωn,xi) = −ωn/
(d(∆Φn,p

0−xi
)

dxi

)
(S7)

To enable a comparison with the experimental data, we define an average phase ve-
locity vph(ωn) for the propagation from the channel entrance x = 0 to x = x i by re-
placing d(∆Φn,p

0−xi
)/dxi with the phase difference and the traveled distance ∆x = x i:

vph(ωn,xi) = −xiωn/∆Φn,p
0−xi

. In the low frequency limit ω � ωcutoff the viscous dissi-
pation of the PDMS channel wall is negligible (δ ≈ 0) and we obtain a phase velocity
of vph(xi) = 3Dp

l−xi
and an average phase velocity v ph(ωn)(0→ xi): vph(xi) = 6Dp

2l−xi
which

are independent of the frequency but dependent on the x-position along the channel.
For high frequencies ω � ωcutoff with δ � 0 we get a phase velocity of

vph(ωn) = vph(ωn) =

√
2ωnDp

cosδ (1− sinδ )

which is independent of xi and thus equal to the averaged phase velocity.
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