Technological parameters used for anisotropic Si etch and non-conformal deposition of PECVD SiO₂ layers

Table S1. Bosch etch parameters optimized for etching of high aspect ratio pillars with diameters in the range of 0.7 to $1.6 \,\mu\text{m}$ and diameter-to-height ratios of up to 1:25

				RF	ICP	C ₄ F ₈	SF ₆ flow
	Т	Time	Pressure	power	Power	flow rate	rate
	°C	S	mTorr	W	W	sccm	sccm
Deposition	15						
cycle		4	20	10	1750	140	1
Etch cycle	15	5	20	30	1750	1	120

Table S2. PECVD parameters optimized for highly non-conformal deposition of SiO₂ on high aspect ratio pillars

Temperature	Pressure	High frequency RF power	SiH₄ (5%) / Ar flow rate	N₂O flow rate	Deposition rate
°C	mTorr	W	sccm	sccm	nm/min
250-350	1600-1800	50	170	710	100

Effect of camera exposure time on apparent broadening of sample plugs moving in a microfluidic channel

Figure S1 shows a series of seven Gaussian profiles with σ = 200 µm (dashed lines) and maximum shift along x axis by Δx =150 µm, *i.e.* the distance traveled by a sample plug in 90 ms at a linear velocity of approximately 1.7 mm s⁻¹. Analysis of the normalized superposition (solid blue line) of this series of curves yields σ '=206 µm. Figure S2 shows the same shift of a series of Gaussian profiles with σ = 50 µm (dashed lines) and their normalized superposition characterized by σ '=74 µm (solid green line). Figure S3 summarizes this dependency of apparent band broadening on the actual band dispersion, σ .

Figure S1. A series of Gaussian profiles with σ = 200 µm (gray and red lines) and maximum shift along x axis by Δx =150 µm. Analysis of their normalized superposition (blue line) yields σ '=206 µm.

Figure S2. The same shift of a series of Gaussian profiles with σ = 50 µm (dashed lines) yields a normalized superposition characterized by σ' =74 µm (solid green line).

Figure S3. Dependency of apparent band broadening on the actual band dispersion, σ . The sample plug travel distance during the camera exposure time, $\Delta x=150 \ \mu m$.