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I. TRANSIENT EXPANSION OF A SWELLING PDMS SHEET

Here, we detail the calculations for determining the swelling characteristics of a solvent from the deformations it
induces on a PDMS sheet. The swelling coefficient S∞ and the diffusion coefficient D are obtained by comparing the
observed time evolution of the length L(t) of a PDMS sheet immersed in a bath of the solvent to a theoretical model.
It is closely related to the method of sorption mass measurements described by J. Crank [1], which relies on the time
evolution of the mass of the sheet. The method requires a precise prediction of the transient swelling geometry of the
polymer sheet. To this end, we solve the coupled problems of solvent diffusion and induced mechanical strain. First,
we compute the diffusion of the swelling solvent in the initial geometry, which we then deform by evaluating the local
swelling expansion.
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FIG. 1. a. Sketch of the thin square PDMS sheet and definition of the reference frame (Oxyz).
b. Illustration of the local swelling expansion of a stress-free infinitesimal cube due to a solvent
concentration c.

In the following derivations, we consider a square plane sheet of height d small compared to its width L (d ≪ L).
The center O of the coordinate system is taken as the center of symmetry of the sheet. The (x, y)-directions are along
then in-plane directions while the z-direction is along the transverse direction, as sketched on Fig. 1.a.

A. Solvent diffusion and local swelling ratio s

The diffusion process of the solvent is characterized by a concentration at saturation c∞ and a diffusion coefficient
D. In this model, we assume that D is independent of the solvent concentration, such that c(~x, t) verifies the classical
diffusion equation with saturated boundary conditions

∂c

∂t
= Ds

~∇2c(~x, t) in Ω , c = c∞ on ∂Ω , (1)

where Ω and ∂Ω are the inner volume and the boundaries of the sheet, respectively.
The local swelling induced by the solvent is quantified through the local swelling ratio s(~x, t). It is defined as the

ratio between the size dl(c) of a stress-free, infinitesimal cube at the concentration c(~x, t) over its dry size dl0 (see
Fig. 1.b).

Next, we make an analogy with linear thermoelasticity. In the same way that thermal strain is assumed to be
proportional to the temperature field T [2], we make the assumption that the local swelling ratio s(~x, t) varies linearly
with the concentration field of the solvent c(~x, t). In addition, it saturates at S∞, yielding

s(~x, t)− 1 =
c(~x, t)

c∞
(S∞ − 1) . (2)

Therefore, the swelling ratio s(~x, t) also verifies the classical diffusion equation with saturated boundary conditions :

∂s(~x, t)

∂t
= D~∇2s(~x, t) in Ω , s = S∞ on ∂Ω . (3)

For a thin plane sheet, there is a scale separation between in-plane (x, y) and transverse z coordinates. This alows us
to model the diffusion process as a one dimensional problem in the transverse direction and to treat the concentration
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field as a function of z and t only. In this case, the solutions for equations (1) and (3) can be found in textbooks [1].
They are

c(z, t)

c∞
= 1−

4

π

∞
∑

n=0

(−1)n

2n+ 1
cos

(2n+ 1)πz

d
exp

(

−
D(2n+ 1)2π2t

d2

)

,

s(z, t)− 1

S∞ − 1
= 1−

4

π

∞
∑

n=0

(−1)n

2n+ 1
cos

(2n+ 1)πz

d
exp

(

−
D(2n+ 1)2π2t

d2

)

. (4)

Plots of this concentration field c(z, t) are shown on Fig. 2.a for different values of time t.
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FIG. 2. a. Concentration profiles c(z, t) plotted using equation (4) for different times t =
[0, 0.01, 0.1, 0.5, 1, 2] · D/d2. b. Plots of the overall strain L(t)/L0 − 1 for S∞ = 1.14 as a func-

tion of
√

d2 · t/D, the square root of the nondimensional time: using the exact solution from equation
(15) (solid line) and using the initial time approximation from equation (16) (dashed line).

B. The swollen geometry

To estimate the transient swelling geometry, we recall the analogy with linear thermoelasticity and rely on the
classical models that relate a given strain to mechanical stresses [2]. In our case, the concentration profile c(z, t)
imposed by diffusion induces a local swelling ratio s(~x, t), which can be expressed as a swelling strain : ǫs = (s(z, t)−

1)11. This strain tensor is not geometrically compatible: there does not exist any physical displacement field ~ξ(~x, t)
that creates such a strain. In particular, it violates the second compatibility equation

∂2ǫs
yy

∂z2
+

∂2ǫs
zz

∂y2
6= 2

∂2ǫs
yz

∂y∂z
. (5)

As a result, the observed strain ǫ has to be different from the natural swelling strain ǫs and it induces internal
mechanical stresses σ according to the Hook relation [2]:

σ = 2µ(ǫ− ǫs) + λTr(ǫ− ǫs)11 . (6)

We recall the thin sheet limit (d ≪ L) to assume problem invariance in the (x, y) plane. When used along with the
compatibility equations, this limits the strain tensor to the form

ǫ =





γ(t) 0 0
0 γ(t) 0
0 0 f(z, t)



 , (7)

where γ(t) and f(z, t) are the unknowns to be determined.
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Plugging this strain into equation (6), the stress tensor becomes

σxx = σyy = 2µ[γ(t)− (s(z, t)− 1)] + λ[2(γ(t)− (s(z, t)− 1)) + (f(z, t)− (s(z, t)− 1))] ,

σzz = 2µ[f(z, t)− (s(z, t)− 1)] + λ[2(γ(t)− (s(z, t)− 1)) + (f(z, t)− (s(z, t)− 1))] (8)

and shear components are zero.
At this point, we assume that the solid responds instantaneously to the variations of swelling strain induced by the

diffusion process. Hence, the stress tensor must verify the equation of statics ~divσ = 0 with unconstrained boundary
conditions. This yields

< σxx >z=< σyy >z = 0 ,

σzz = 0 , ∀z , (9)

where the < · >z operator is the mean in the z-direction. At each time t, these equations lead to a coupled linear
system in terms of f(z) and γ

2(λ+ µ)(γ− < s− 1 >z) + λ(< f >z − < s− 1 >z) = 0 ,

(2µ+ λ)(f(z)− (s− 1)) + 2λ(γ − (s− 1)) = 0 , (10)

which has a unique set of solutions

γ(t) =< s(z, t)− 1 >z ,

f(z, t) =
3λ+ 2µ

λ+ 2µ
(s(z, t)− 1)−

2λ

2λ+ µ
< s(z, t)− 1 >z . (11)

These results can be further simplified in the case of PDMS because it is a nearly incompressible elastic solid, i.e.
a material for which µ ≪ λ. Hence, the observed deformation is

ξx(x, y, z, t) =< s(z, t)− 1 >z ·x ,

ξy(x, y, z, t) =< s(z, t)− 1 >z ·y ,

ξz(x, y, z, t) = 3

∫

z

0

(s(z, t)− 1)dz − 2 < s(z, t)− 1 >z ·z . (12)

In practice, the measurable quantities in an experiment are the overall thickness d(t) and length L(t) of the sheet.
They are

d(t) = d0 + 2ξz(d0/2, t) =< s(z, t) >z ·d0 ,

L(t) = L0 + 2ξx(L0/2, t) =< s(z, t) >z ·L0 . (13)

In the end, we find that the inhomogeneous swelling strain s(z, t)− 1 induces a homothetic transformation on the
overall geometry of the swollen sheet: the length and thickness evolve as if the sheet is homogeneously swollen by
the solvent at a concentration < c(z, t) >z. Thereby, the overall length of a square swelling sheet is unambiguously
defined by

L(t)

L0

=< s(z, t) >z . (14)

C. Combining diffusion and deformations

The swelling ratio s(z, t) is given by the diffusion of a swelling solvent into the immersed sheet. Therefore, the
transient length of the swelling sheet L(t) is found by combining the main results from the two previous subsection,
in Eq. (4) and Eq. (14), to yield

L(t)

L0

− 1 = (S∞ − 1) ·

(

1−
4

π2

∞
∑

n=0

1

(2n+ 1)2
exp

(

−
D(2n+ 1)2π2t

d2

)

)

. (15)

For initial times, this expression simplifies [1] to

L(t)

L0

− 1 = (S∞ − 1)
2

d

√

Dt

π
. (16)
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A comparative plot between the full solution (15) and the initial time approximation (16) is shown on Fig. 2.b,
revealing a good agreement until t ≈ d2/D.

[1] J. Crank, The Mathematics of Diffusion, Oxford Science Publications, 1975.
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