Supplementary Information

Compressed-air flow control system

Ki Wan Bong^{*a*‡}, Stephen C. Chapin^{*a*‡}, Daniel C. Pregibon^{*b*}, David Baah^{*c*}, Tamara M. Floyd-Smith^{*d*}, and Patrick S. Doyle^{*a*}

^aDepartment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

^bFirefly BioWorks, Inc., Cambridge, MA 02139, USA.

^c Materials Science and Engineering Program, Tuskegee University, Tuskegee, AL 36088, USA.

^d Department of Chemical Engineering, Tuskegee University, Tuskegee, AL 36088, USA.

[‡] Authors contributed equally to this work

*e-mail: pdoyle@mit.edu

1. Channel geometries

Figure S1. Schematic depicting the four types of channels used in this article. For the three channels generating laminar coflows, the dimensions were all identical; only the number of inlets differed.

2. Estimation of maximum fluid velocity

The following assumptions were made in the estimation:

- 1. Newtonian, incompressible, fully developed, and laminar flows
- 2. Negligible surface tension between solutions
- 3. Viscosity μ is the same (65 cP) in all inlet flow streams.
- 4. Pressure drop occurs in narrow inlet channels.
- 5. Negligible PDMS channel deformation for W (channel width) ~ H (channel height)¹

Basic Equations

For laminar flow in a pipe, the volumetric flow rate Q is given by the following equation²,

$$Q = \frac{AD_h^a}{32\mu L} (P_{loss}) \quad (1)$$

Hydraulic diameter of rectangular tubes is also given by the following equation².

 $D_h = \frac{2ab}{a+b}$ (2) where a = width of a pipe and b = height of a pipe.

Table S1. Inlet geometry for the channel used in Fig. 2.

Width, W ₁	Area, A ₁	Hydraulic Diameter, D _{h,1}	Length, L ₁
50 µm	$1900 \ \mu m^2$	43 µm	4000 µm

Equation Setup

$$2Q_{\text{inlet}} = \frac{\mathbf{A}_{4} \mathbf{P}_{h,4}^{3}}{\mathbf{16} \mu \mathbf{L}_{4}} (\mathbf{P}) = Q_{t} \quad (3)$$

 $U_{max} = 1.5 U_{avg} = 1.5 (Q_t/A_2) = 858 \times P (\mu m/s)$ (4)

3. Bead Tracking

A 0.02 % solution of 1.6 μ m polystyrene beads in PEG-DA 700 was used to measure maximum fluid velocity (U_{max}). The bead velocity was maximum in the center of the channel, and midway between the two walls. After a given pressure was applied, beads in the center of the channel were followed with a 20X microscope objective (Zeiss) with an optivar setting of 2.5X leading to effective magnifications of 50X. Movies of translating beads were taken by a CCD camera that captured images at the rate of 30 fps using an exposure time of 1/500 s. From the frame-to-frame position of beads, bead velocities were calculated using the central difference approximation.

Table S2. Comparison between measured and estimated U_{max} .

P (Psi)	Measured U_{max} (µm/s)	Estimated U_{max} (µm/s)	% Deviation from
	(From bead tracking)	(From equation (4))	the estimation
0.5	591	429	37.8 %
1.0	954	858	11.1 %
1.5	1344	1288	4.4 %
2.0	1801	1717	4.9 %
2.5	2374	2146	10.6 %
3.0	2696	2575	4.7 %
3.5	3252	3005	8.2 %
4.0	3642	3434	6.0 %

4. Automation of pulsed-flow operation

Figure S2. Schematic description of the electrical circuit used for automated control of the threeway solenoid valve via the parallel port connection. A simple GUI was constructed using Python to allow the user to cycle this process automatically through the specification of a flow duration and a stoppage duration.

5. A python script for the automation

A sample code for the GUI used to control the solenoid valve is provided as a separate pdf file.

6. Syringe Setup

In order to compare the response time of our system with that of a syringe setup, we performed additional bead tracking experiments with a two-inlet PDMS microchannel. For the syringe measurements, two Hamilton Gastight Syringes (Model 1701, 10 μ L volume) were driven on the same Harvard Apparatus PHD programmable syringe pump, with polyethylene feed tubing

(1/16" I.D. and 1/8" O.D.) connected to the device via plastic adapter units. For the data collected in Fig. 4, the syringe pump was programmed so as to alternate between 1 s of flow at a prescribed flow rate and 1 s of stoppage. For the data collected in Table 1, the syringe pump was driven at a prescribed flow rate for 10 min and then manually stopped; the time required for suspended fluorescent beads to come to a stop was measured.

7. Cost Estimation

Table S3. Cost estimation for the compressed-air flow control system. Estimates are given for versions of the system capable of controlling 2, 4, 6, or 8 streams. Marginal cost of adding an additional stream is ~\$90.

Number of Streams	2	4 (5 8
Swagelok Needle Valves	\$ 60.00	\$120.00 \$ 180.00	\$ 240.00
Solenoid Valve	\$ 50.00	\$ 50.00 \$ 50.00	\$ 50.00
High-P Pressure Regulator	\$100.00	\$100.00 \$ 100.00	\$ 100.00
Low-P Pressure Regulator	\$ 50.00	\$ 50.00 \$ 50.00	\$ 50.00
Digital Pressure Gauge	\$ 260.00	\$ 260.00 \$ 260.00	\$ 260.00
PTFE Tape	\$ 5.00	\$ 5.00 \$ 5.00	\$ 5.00
PVC Tubing	\$ 20.00	\$ 20.00 \$ 20.00	\$ 20.00
Tygon Tubing	\$ 10.00	\$ 10.00 \$ 10.00	\$ 10.00
Luer Stubs	\$ 7.20	\$ 12.00 \$ 16.80	\$ 21.60
Pipette Tips	\$ 9.00	\$ 18.00 \$ 27.00	\$ 36.00
Plastic Syringes	\$ 3.00	\$ 5.00 \$ 7.00	\$ 9.00
Circuit Components	\$ 20.00	\$ 20.00 \$ 20.00	\$ 20.00
In-Line Pressure Gauges	\$100.00	\$ 200.00 \$ 300.00	\$ 400.00
Plastic Connectors	\$ 7.50	\$ 13.50 \$ 19.50	\$ 25.50
Threaded Male Connectors	\$ 20.00	\$ 20.00 \$ 20.00	\$ 20.00
TOTAL	\$ 722	\$ 904 \$ 1,085	\$ 1,267

Figure S3. Cost comparison between syringe-based and pressure-based systems. The economic advantage of the pressure-based system is particularly evident in applications that require the control of a large number of streams.

8. Supplementary Video 1

Real-time video showing the manipulation of six coflowing laminar streams. Channel is 38 µm tall and 270 µm wide. Dark streams: 30% PEG-DA, 70% food coloring. Light streams: 30% PEG-DA, 70% water.

9. Supplementary Video 2

Video (0.5X real-time) showing the generation of droplets of different sizes. Droplet size is modulated in a continuous fashion by the gradual closing of the relief valve connected to the dispersed-phase sample arm. Channel is 33 μ m tall and 100 μ m wide. Dispersed phase: food coloring. Continuous phase: mineral oil.

10. Supplementary Video 3

Real-time video showing pulsed flow operation in a compressed-air flow control system followed by pulsed flow operation with a syringe pump system. Channel is 38 μ m tall and 270 μ m wide. Stream: 0.02 % solution of 1.6 μ m polystyrene beads in PEG-DA.

11. References

- [1] Gervais, T., El-Ali, J., Günther, A., Jensen, K.F., Lab Chip. 2006, 6, 500-507.
- [2] M. M. Denn, *Process Fluid Mechanics*, Prentice Hall, New Jersey, 1st edn., **1980**.