
Supplementary Information 1: Opacity from particle positions

In this supplementary information section we provide the conversion between the cell output

positions obtained by microscopic observation and the opacity values related to the dielectric prop-

erties of the yeast cells. These positions arise through the focusing action of the dielectrophoretic

force field in the active element, followed by a fluidic redistribution due to a channel enlargement

necessary for convenient observation (Supplementary Fig. 1), so that reconstruction of the dielec-

tric opacity values from the output particle stream position requires both a fluidic mapping and the

opacity reconstruction per se. In this Supplementary Information, section 1 deals with the opacity

reconstruction, whereas section 2 addresses the fluidic mapping aspect.

1 Particle Equilibrium Positions and Opacity Reconstruction

We have shown that the final equilibrium position in our sorting channel is a function of ratio of

the forces acting on the cells from the two sides, and that vice versa, observation of the equilibrium

positions allows to estimate this force ratio1:

< F1(0) >

< F2(0) >
= g(yeq) (1)

where the notation F1(0) and F2(0) indicates that the force ratio is measured at the channel

midline, at the equilibrium position it would be always equal to 1 by definition. The function g(yeq)

results from the electric field geometry, we shall discuss it below.
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Supplementary Figure 1: Origin of the cell positions and mapping procedure. The cell positions

result from a double process. Firstly, the dielectrophoretic forces focus each particle type to its

characteristic flow line. This position is a function of the applied voltages and frequencies, and of

the intrinsic particle properties, in particular the opacity Ω. Second, we use a channel enlargement

after the electrically active element to slow down the flow and ease observation. This implies

fluidic redistribution, which we need to take into account when reconstructing the opacity values

from the output particle positions. The overall mapping procedure for the retrieval of the opacity

is indicated on the right hand side of the figure.
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In a typical setting, we focus the cells towards the channel midline using repulsive dielec-

trophoretic forces acting from both sides of the channel, using a low frequency signal on each

side (Vlf,1 and Vlf,2). To induce the cell sorting, we add a high frequency signal on one side (Vhf

superimposed on Vlf,1). The resulting force ratio, as measured at the channel midline is:

F1

F2

=
V 2
lf,1 + <fCM(hf)

<fCM(lf)
· V 2

hf

V 2
lf,2

=
V 2
lf,1 + Ω · V 2

hf

V 2
lf,2

(2)

where the opacity is as defined as the ratio of the real parts of fCM at the frequencies involved

(cf. eq. 2 in the main text).

Combining eq. 2 and eq. 1, we see that the opacity can be estimated from the equilibrium

positions according to:

Ω =
g(yeq)V

2
lf,2 − V 2

lf,1

V 2
hf

(3)

In the past, we have used conformal mapping to obtain the electric field distribution and

hence g(yeq)
1. While there is good agreement between predicted and observed particle positions in

calibration experiments with isolating polystyrene microbeads1, the formulas involved are rather

complicated and require mathematical software such as Matlab for their evaluation.

It has been pointed out2 that the dielectrophoretic force field of an interdigitated electrode

array can be approximated by an exponentially decaying function, the approximation being better
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at greater distance from the array. Even though in our channel geometry the electric field is forced

into the horizontal plane rather than being able to spread out vertically, our arrangement of al-

ternatingly powered electrodes along the sorting channel still strongly resembles an interdigitated

electrode array.

Supplementary Figure 2 shows that it is possible to approximate the g(yeq) function as ob-

tained from the conformal mapping approach by an exponential, with very good agreement in the

central region of the channel. We can therefore approximate g(yeq) by:

g(yeq) ≈ eα
yeq
w (4)

where the coefficient α can be obtained by equalizing the slopes for yeq = 0, it has a value

of α ≈ 6.5.

This is close to α = 2π, expected on theoretical grounds using the result presented in 2.

Indeed according to 2, the dielectrophoretic force produced by an interdigitated electrode array de-

cays with a constant of π
w

, but since we oppose two forces, one increasing and the other decreasing

when going away from the channel midline, we expect a decay constant of 2π
w

, and hence α = 2π.
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Supplementary Figure 2: Relation between the force ratio and the particle equilibrium position.

The equilibrium position of the particles is determined by the ratio of the forces acting from the

two electrode arrays; inversely, the force ratio and hence the dielectric properties can be inferred

from the lateral position of the focused particle stream. The figure shows the particle positions as a

function of the force ratio. The curve labelled ”conformal mapping” is obtained from the electrical

field as estimated by the conformal mapping technique 3, whereas the curve labelled ”exponential

approximation” is obtained semi-empirically as by fitting an exponential of the form (force ratio)

= eαyeq to the central part of the relation obtained by conformal mapping.
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B) Observation Channel: 
Rectangular Section, 100μm x 20μm

y1 y2

Supplementary Figure 3: Conservation of mass leads to redistribution of the flow lines. The quad-

rangular section of the sorting channel leads to a near parabolic distribution of the velocity across

the channel, as shown in Supplementary Figure 3-A. In the observation region, the low aspect ratio

(h � w) leads to a more flat velocity profile along the horizontal direction (Supplementary Fig.

3-B). The conservation of mass implies that the amount of fluid transported between the channel

midline, which is the symmetry axis of the channel, and homologous positions must be equal.

In mathematical terms, if y1 and y2 are corresponding flow lines in the two channel sections, the

integrals from 0 to y1 and 0 to y2, shown as grey areas in the figure, are equal.
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2 Fluidic Mapping

The dielectric properties of the yeast cells, together with the applied voltages and frequencies,

determine the equilibrium positions in the sorting channel. However, following the sorting channel,

we have a large observation channel, and the channel cross-section passes from 20µm x 20µm to

typically 100-300µm x 20µm. While of great practical advantage due to the slowdown of the liquid

for fluorescence observation, this induces a fluidic redistribution. Indeed, in a square section, the

laminar flow profile implies a nearly parabolic flow profile both horizontally and vertically across

the channel, whereas in a horizontal wide channel, the flow profile is parabolic only along the

vertical direction, but more nearly flat along the horizontal direction. Conservation of mass then

implies redistribution of the flow lines, as shown in Supplementary Figure 3. In order to correctly

evaluate the particle opacities, we need to correct for this effect. We shall now derive simple

formulas for the mapping between the positions in the sorting channel of square section and the

wide rectangular observation channel.

We use a 2D approximation to obtain the evolution of the particle positions when the channel

cross section changes. In a channel with laminar flow, conservation of mass implies that corre-

sponding segments of the fluid flow must transport the same amount of fluids at all cross sections

of the channel. This means that the grey areas, shown in Supplementary Figure 3, representing the

fluid flow transport, must be identical if y1 and y2 represent corresponding flow lines at the two

sections of the channel shown. Supposing that the channel height remains constant, we have:

7

Supplementary Material (ESI) for Lab on a Chip
This journal is © The Royal Society of Chemistry 2011



(
dQ
dt

)
y1

=

∫ y1

0

v1(y)(d)y =

(
dQ
dt

)
y2

=

∫ y2

0

v2(y′)(d)y′ (5)

The local velocity in rectangular channel cross section of height h and width w is given by4, 5:

vfluid(y, z) =
4h2∆P

π3ηL
·
∞∑

n, odd

(−1)
n−1

2

n3

[
1−

cosh
(
nπ y

h

)
cosh

(
nπ w

2h

)] cos
(
nπ

z

h

)
(6)

P being the pressure, η the dynamic viscosity and L length of the channel; by using the cos

terms, the coordinate system is centred on the channel center, y spanning the width the channel,

and z the height.

The mean velocity for a given position across the channel width is obtained by averaging

along the z direction, using the relation (−1)
n−1

2 · sin
(
nπ
2

)
= 1 for n odd:

vfluid(y) =
1

h
·
∫ h

2

−h
2

vfluid(y, z)dz =
8h2∆P

π4ηL
·
∞∑

n, odd

1

n4

[
1−

cosh
(
nπ y

h

)
cosh

(
nπ w

2h

)] (7)

The pressure drop per unit channel length, ∆P
L

, varies along the channel when the cross

section changes whereas the total flow rate dQtotal
dt does not. We therefore express the velocity

distribution across the channel as a function of the total flow rate rather than of the pressure drop.

To do so, we combine the expression for the total flow rate given in 5 with eq 7, we get:
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vfluid(y) =
dQtotal

dt
· 1

hw
·

1− 96
π4

∑∞
n, odd

1
n4

[
cosh(nπ y

h)
cosh(nπ w

2h)

]
1− 96

π5 · 2h
w
·
∑∞

n, odd
1
n5 tanh

(
nπ w

2h

) (8)

where we have used
∑∞

n, odd
1
n4 = π4

96
from 5.

In the sorting channel, the flow profile is nearly parabolic and we can approximate eq. 8 by

the parabolic flow profile of an infinite plate geometry, given by5:

v1(y) =
dQtotal

dt
· 1

h2
·
[

3

2
− 6y2

h2

]
(9)

In the observation channel, we can approximate the flow speed as being constant and equal

to maximum flow speed vmax predicted in the center of the channel, but over a reduced apparent

channel width weff:

v2(y′) =


vmax for |y′| ≤ weff

2

0 otherwise

(10)

We estimate vmax using eq. 8 for y = 0:

vmax = vfluid(0) =
dQtotal

dt
· 1

hw
·

1− 96
π4

∑∞
n, odd

1
n4 · 1

cosh(nπ w
2h)

1− 96
π5 · 2h

w
·
∑∞

n, odd
1
n5 tanh

(
nπ w

2h

) (11)
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For w � h, we can use cosh (x� 1)� 1 and tanh (x� 1) ≈ 1 such that we get:

vmax ≈
dQtotal

dt
· 1

hw
· 1

1− 96
π5 · 2h

w
·
∑∞

n, odd
1
n5

≈ dQtotal

dt
· 1

h
· 1

w − 192
π5 · h

(12)

In order to estimate weff we use the conservation of the total volume flow rate:

hweff · vmax =
dQtotal

dt
(13)

so that we get for weff:

weff ≈ w − 192

π5
· h = w − 0.63 · h (14)

Evaluation of the mass conservation equation (eq. 5) for the two flow profiles given by eq. 9

and eq. 10 yields a mapping from the square section to the wide channel section:

y′ =
y

h
·
(

3

2
− 2

(y
h

)2
)
· weff (15)

In practice, we observe y′ in the observation channel and need estimate y in the sorting

channel. Solving eq. 15 for y yields:
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y = σy ·
cosαy −

√
3 · sinαy

2
· h (16)

where σy is the signum function of y′, i.e. it is 1 if y′ ≥ 0 and -1 otherwise. αy is defined by:

αy =
1

3
· tan−1

√(weff

2y′

)2

− 1

 (17)

where tan−1 designates the functional inverse of the tangent, i.e. the arc tangent function. Eq.

17 requires that |y′| ≤ weff
2

, indicating that the flow lines in the wide channel spread only over the

effective width and not the entire channel width, in agreement with the initial hypothesis of a flat

velocity profile limited to an effective channel width given by weff. Further, for y′ = 0, we get a

division by zero in eq. 17, but we can use tan−1 (+∞) = π
2

so that αy (y′ = 0) = π
6
, and, using the

special values of the sin and cos functions at π
6
, we obtain y = 0 as it ought to be for the symmetry

axis of the channel.
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Supplementary Information 2: Geometrical Life History
for Budding Yeast

Geometric variables We model yeast cells as ellipsoids with cylindrical symmetry, that is, as

ellipsoids having two equal half axes and a distinct, generally longer half axis along the symmetry

axis (Supplementary Fig. 1-A). Single cells are modelled as single ellipsoids, dividing cells as

connected ellipsoids sharing the rotational symmetry axis (Supplementary Fig. 1-B). The shape of

a single ellipsoid with cylindrical symmetry can be described by its eccentricity, being defined as

the ratio of the length of the half axis along the rotational symmetry axis as compared to the length

of the half axis perpendicular to the symmetry axis (Supplementary Fig. 1-A). The evolution of the

eccentricity with growing cell size is sufficient to characterize the growth history up to division, and

after cytokinesis. For cells engaged in division, in addition, the ratio of the bud size as compared

to the mother cell size is needed.

For reasons of convenience, we choose the visible cross-section area of the cells, in µm2, in

microscopic observations as a measure for cell size. For the observation of the long and short axis

by conventional microscopy, it is necessary that the rotational symmetry axis is in the observation

plane. Fortunately, the cells are usually prolate rather than oblate ellipsoids, and orient their long

axis in the electric field, which is parallel to the observation plane in our device. Using the nomen-

clature given in Supplementary Fig. 1-B, the mother and bud areas can be calculated as π · a · c

and π · abud · cbud respectively.
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Supplementary Figure 1: Geometric Variables. A) For an ellipsoid with rotational symmetry, we

define the eccentricity as being the ratio of the length of the half axis along the symmetry axis c

as compared to the length of the half axis a perpendicular to it. B) Model of a budding yeast cell;

mother cell and bud share a common rotational symmetry axis along c and cbud.

Eccentricity The eccentricity varies in a characteristic way for yeast cells of different sizes, as

shown in Supplementary Fig. 2-A. The eccentricity is typically close to 1 for very small cells,

distinctly larger than 1 for intermediate stages, returning towards 1 for the largest cells. This is

because the very small and very large cells are spherical, whereas medium size cells are elongated.

We model this variation by a second order polynomial function, as shown by the best-fit line in

Supplementary Fig. 2-A. We obtain a least-squares best fit as follows:

eccentricity = 0.969 + 0.01802µm−2 · A− 0.0003666761µm−4 · A2 (1)

where A is the cross-sectional area of the cell. The eccentricity as calculated from eq. 1

is shown as red theoretical line in Supplementary Fig. 2-A. The underlying geometrical mea-
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Supplementary Figure 2: Geometric parameters changes in yeast life history. A) Eccentricity as

a function of cell size. We describe cell eccentricity as a second order polynomial function of the

size as measured by the visible cross sectional area. B) Variation of yeast cell size during division

quantified by the visible cross-section area of mother and daughter cells. The model is obtained

under the assumption that cell division always occurs at a specific cell volume and that after cell

separation, mother and daughter cells exhibit equal volume growth, leading to a non-linear relation

of the visible cross-section area. The red curves are least square best-fits to the experimental data.
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surements are obtained from a growing yeast culture, including pooled data from single cells and

budding cells.

Mother and Daughter cell volume In a given population, a correlation between the total size of

the cell doublets and the relative bud size can be observed (Supplementary Fig. 2-B). The variation

in the bud-to-mother size ratio can be approximately explained by a model assuming that division

occurs at a given critical cell volume and that after cell separation, mother and daughter cells

experience a similar increase in volume; the eccentricity relation can be used to convert between

the areas and the cell volume. We further assume no mass transfer between mother and daughter.

This model is only approximative because the maximal volume cells can acquire is limited, and

therefore the change in volume of large cells must decrease.

By least squares fitting, we find a critical division volume of

Vdivision = 83.4µm3 (2)

in agreement with flow cytometry measurements1. In terms of mother and daughter volumes,

the equal volume growth model implies:

Vmother − Vbud = Vdivision (3)
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Neck size The finite neck size in principle leads to an overlap between the mother and daughter el-

lipsoids, making a full distinction between mother and daughter volume difficult. However, except

for very small buds, the neck is relatively narrow (diameter of the cytoplasmic part approximately

500nm) , so that we neglect this overlap effect. Hence, for geometrical considerations, we model

mother and daughter as full rather than cut ellipsoids.

Application example The equal volume growth model together with the evolution of the eccen-

tricity is sufficient to obtain an approximate geometrical description of yeast cells throughout the

division cycle. As a practical example, we shall obtain the typical mother and daughter half

axis lengths for a visible mother area of A=35µm2. According Eq. 1, we expect an eccentric-

ity value of 1.15. Since the cross-sectional area of an ellipse is given by πac, a and c being the

short respectively long half axis, we obtain a = 3.11µm, and c = 3.58µm for the mother. The

mother volume is then obtained as the volume of the ellipsoid with cylindrical symmetry, given by

4π
3
a2c = 145.2µm3. The bud volume follows from eq. 3: Vbud = 61.8µm3. In order to find the half

axes lengths abud and cbud we need to solve the following equation system:


cbud
abud

= 0.969 + 0.01802µm−2 · πabudcbud − 0.0003666761µm−4 · π2a2
budc

2
bud

61.8µm3 = 4π
3
a2

budcbud

(4)

Solving eq. 4 numerically yields abud = 2.32µm and cbud = 2.74µm and hence a bud

eccentricity of 2.74µm
2.32µm = 1.18.
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1. Tamaki, H. et al. Glucose-dependent cell size is regulated by a g protein-coupled receptor

system in yeast saccharomyces cerevisiae. Genes To Cells 10, 193–206 (2005).
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Supplementary information 3: Estimation of the equiva-
lent permittivity of dividing yeast cells

This supplementary information details how the equivalent permittivities of single and divid-

ing yeast cells can be calculated.

1 Problem Statement

The dielectrophoretic force on a particle of arbitrary shape depends on the Clausius-Mossotti fac-

tor, which is given by equation 3 in the main text:

fCM (ω) =
ε∗p (ω)− ε∗m (ω)

ε∗m (ω) +
[
ε∗p (ω)− ε∗m (ω)

]
· nx

(1)

This Supplementary Information details how the complex permittivity of the particle ε∗p at a

given angular frequency ω can be obtained. The calculation of the form factor nx, depending only

on the particle geometry, can be found in Supplementary Information 4.

2 Material Properties

In terms of electrical properties, we consider three distinct regions: the suspension medium (with

permittivity εm and conductivity σm), the cytoplasm (with permittivity εcyto and conductivity σcyto)

1
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and cell membrane (with permittivity εmem and conductivity σmem). For each of these regions, the

frequency-dependent complex permittivity is defined by the generic relation ε∗ = ε+ σ
iω

. We do not

explicitly simulate the cell wall, since its conductivity and permittivity are close to the values of the

extracellular medium1 when the medium conductivity is not very low, such that the presence of the

wall should only have minor influence on the dielectrophoresis of budding yeast. The numerical

values used are summarized in table 1; they are taken from 2, with the exception of the conductivity

of the suspension medium, which we measure. The electric properties of the suspension medium

are needed to evaluate ε∗m = εm + σm

iω
in eq. 1, the other properties are needed to evaluate ε∗p.

3 Single Cells

We model the single cells as rotationally symmetrical prolate ellipsoids, with a long axis along the

electric field and the two short axes perpendicular to it. The ratio of long to short axis is termed

eccentricity; Supplementary Information 2 describes the evolution of the eccentricity for different

cell sizes.

A multi-shell model suitable for biological cells of ellipsoidal shape is available in literature3, 4;

this model takes in particular into account that the membrane has a constant thickness, implying

that the inner and outer membrane surface are in fact not confocal ellipsoids.

According to this model, the equivalent permittivity of a generic particle with core-shell

structure is:

2
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Quantity Value

Cytoplasm conductivity σcyto 300 mS/m

Cytoplasm permittivity εcyto 50 · ε0

Membrane conductivity σmem 0.25 µS/m

Membrane permittivity εmem 6 · ε0

Medium conductivity σm 60 mS/m

Medium permittivity εm 78 · ε0

Membrane thickness d 8 nm

Cell geometry (a, c for single cells) cf. Supplementary Information 2

Cell geometry (a, c, abud, cbud for dividing cells) cf. Supplementary Information 2

Neck diameter s Best fit s = 0.4 · abud, s→ 0 in cytokinesis

Table 1: Material constants and dimensions used for the finite element simulation of the

dividing yeast cells. ε0 is the vacuum permittivity, given by ε0 = 8.85 C
Vm

. The values for

σcyto, εcyto, σmem, εmem and d are taken from 2; σm is measured using a conductivity-meter,

while the medium permittivity εm is assumed to be equal to the one of water.
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ε∗p = ε∗shell ·
1 + 3(1− nx) · φcore · fi

1− 3nx · φcore · fi
(2)

where nx is the form factor, and φcore is the volume fraction occupied by the core. fi is an

inner Clausius-Mossotti factor, reflecting the combined contribution of core and shell:

fi =
1

3
· ε∗core − ε∗shell

ε∗shell + nx · (ε∗core − ε∗shell)
(3)

The form factor nx, also referred to as Lorentz depolarisation factor, is well known for ellip-

soids. For the prolate ellipsoids used here it is given by5:

nx =
1

1−
(
c
a

)2 − c

a
·

ln

(
c
a
−
√(

c
a

)2 − 1

)
[(

c
a

)2 − 1
] 3

2

(4)

where the electric field vector is along c > a. For spherical particles, nx = 1
3
.

The core-shell model given by eq. 2 is designed to be used recursively for multi-layered cell

structures. However, since we neglect the cell wall, there is no need to do so, and the equivalent

permittivity ε∗p can be obtained directly from eq. 2 and 3 by setting ε∗shell = ε∗mem = εmem + σmem
iω

and

ε∗core = ε∗cyto = εcyto +
σcyto

iω
. The volume fraction of the core is the volume fraction occupied by the

cytoplasm:
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φcore = φcyto =
a2c

(a+ d)2 (c+ d)
(5)

d being the membrane thickness.

4 Dividing Cells

Obtaining the equivalent permittivity of dividing cells is more complicated. We provide and com-

pare three approximations: a single-relaxation formula extending the single-cell analysis given

above; a double-relaxation formula taking into account the presence of the narrow neck joining

mother and daughter cell; and finally, a finite element simulation as an alternative means of obtain-

ing the complex permittivity ε∗p.

Supplementary Fig. 1 compares the three solutions. The single-relaxation formula gives an

order of magnitude estimate; however, the model fails to account for the detailed influence of the

presence of the neck, and in particular for the low-frequency relaxation due to neck. The finite ele-

ment simulation clearly indicates the presence of this low-frequency relaxation, in agreement with

finite element simulations of dividing yeast cells previously reported in literature6. The double-

relaxation analytical formula finally agrees well with the results obtained from the finite element

simulation.
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Supplementary Figure 1: Comparison of finite element simulation with the single relaxation and

double relaxation analytical solutions in terms of the real part of the equivalent particle permittivity

ε∗p. The three approaches are evaluated for a sample yeast geometry, chosen to reflect neck closing

during cytokinesis. The half axis values used for the yeast geometry are indicated in the inset,

their numerical values are: a = 3.11µm, c = 3.58µm, abud = 2.32µm, cbud = 2.74µm, for a

neck diameter of s = 311nm. The single-relaxation model is obtained by evaluating the single-cell

model with appropriate volume fractions and form factors as described in section 4.1; the double-

relaxation model is described in section 4.2, while the finite element simulation is described in

section 4.3. The material constants used are listed in table 1.

6

Supplementary Material (ESI) for Lab on a Chip
This journal is © The Royal Society of Chemistry 2011



4.1 Single Relaxation Formula

A first approximation for the equivalent permittivity of dividing yeast cells can be obtained by ap-

plying minor adjustments to the single cell model described above. Indeed, it is straightforward to

use eq. 2 with form factors and cytoplasmic volume fractions reflecting the mother-bud geometry.

The volume fraction occupied by the cytoplasm for a cell doublet with half axis values a and c for

the mother, abud and cbud for the daughter, membrane thickness d and cytoplasmic neck diameter s

can be estimated by:

φcore = φcyto =

a2c ·
[
2−

(
s
2a

)3]
+ a2

budcbud ·
[
2−

(
s

2abud

)3
]

(a+ d)2 (c+ d) ·
[
2−

(
souter

2(a+d)

)3
]

+ (abud + d)2 (cbud + d) ·
[
2−

(
souter

2(abud+d)

)3
]
(6)

where the outer neck diameter souter is given by:

souter = 2

√
2d · abud + d2 +

(s
2

)2

(7)

Eq. 6 and 7 are obtained by elementary trigonometry and calculus.

An expression for the form factor nx for yeast doublets is given Supplementary Data 4,

equation 19.
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Evaluation of the single cell model with adapted form factors and volume fractions allows

to obtain correct order of magnitude estimations for the permittivity of dividing yeast cells. This

is because adapting the form factor allows to take into account the globally elongated shape of the

doublets, whereas the adapted cytoplasmic volume fraction φcore as given by eq. 6 allows to take

into account the increased relative amount of cell membrane present in the doublets with small

daughters as compared to singlets. The single-relaxation formula fails however to account for the

low-frequency second dispersion typical for dividing yeast6.

4.2 Double Relaxation Formula

An analytical approximation to the double-relaxation behaviour of dividing yeast cells observed in

numerical simulations6 can be obtained by considering the physical behaviour of the current flow

through a dividing yeast cell. In particular, we consider two current paths through a dividing yeast

cell doublet, as shown in Supplementary Fig. 2. The high frequency path avoids the neck, but

requires four capacitive passages through cell membranes. It is a relatively low resistivity path,

since the neck is avoided, giving rise to its major contribution at high frequency. Its contribution

to the total cell permittivity ε∗p is given by ε∗hf. The current path through the neck implies higher

capacitance, since only two membrane capacitor elements are in series rather than four as for the

high frequency path. However, due to the high neck resistivity, the cutoff frequency for this path

will be lower. We shall now analyse the high and low frequency contribution in turn.
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!lf
* !hf

*

Supplementary Figure 2: Alternative current pathways through a dividing yeast cell. The low-

frequency pathway is characterized by a additional capacitance since less membrane elements

are in series, but a lower cut-off frequency due to the high resistivity of the cytoplasmic neck in

particular during cytokinesis. In terms of complex permittivity, the low-frequency pathway gives

rise ε∗lf, the high-frequency pathway to ε∗hf.
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High Frequency Pathway At high frequency (in our experimental settings, above 1MHz), the

impedance due to the cell membrane is relatively low as compared to the impedance of the cyto-

plasm. As a consequence, a substantial voltage drop occurs over the cytoplasm and in particular

the neck. This means that mother and daughter cell are to a first approximation polarized as if the

were suspended alone in medium. Since the equivalent permittivity of a particle is described by

the induced dipole moment per volume, such independent behaviour means that at high frequency,

the doublet will have an equivalent permittivity corresponding to a single cell.

In practice, mother and daughter have different size, so their equivalent permittivities are

not exactly equal. The question is how to obtain an averaged permittivity, and there are several

possibilities leading to only slightly different results, such as volume-weighted averaging of the

individual equivalent permittivities, average cell geometry in terms of the half axis radii but single

estimation of the equivalent permittivity, estimation of the cell geometry from the total volume

divided by two followed by estimation of the permittivity and many more.

We choose the following approach: in order to correctly reflect the total amount of membrane

present with respect to cytoplasmic volume, we use the core volume fraction as defined by eq. 6:

φhf =

a2c ·
[
2−

(
s
2a

)3]
+ a2

budcbud ·
[
2−

(
s

2abud

)3
]

(a+ d)2 (c+ d) ·
[
2−

(
souter

2(a+d)

)3
]

+ (abud + d)2 (cbud + d) ·
[
2−

(
souter

2(abud+d)

)3
] (8)

where the subscript indicates the use of this volume fraction for the high-frequency part of

10

Supplementary Material (ESI) for Lab on a Chip
This journal is © The Royal Society of Chemistry 2011



the permittivity.

For the cell geometry, we use the mother half axis-radii a and c, since the mother has the

bigger volume and therefore contributes more importantly to the equivalent permittivity:

nx , hf =
1

1−
(
c
a

)2 − c

a
·

ln

(
c
a
−
√(

c
a

)2 − 1

)
[(

c
a

)2 − 1
] 3

2

(9)

Form factor and cytoplasmic volume fraction are sufficient to obtain the high frequency

equivalent permittivity3, 4:

ε∗hf = ε∗mem ·
1 + 3(1− nx , hf) · φhf · fhf

1− 3nx , hf · φhf · fhf
(10)

with

fhf =
1

3
·

ε∗cyto − ε∗mem

ε∗mem + nx , hf ·
(
ε∗cyto − ε∗mem

) (11)

Evaluation of eq. 10 along with eq. 8, 9 and 11 determines ε∗hf, completing our derivation for

the high frequency path.

Low Frequency Pathway At low frequency (for our experimental conditions, less than 20-50kHz)

the cell membranes are high-impedance obstacles to the current flow. This implies maximum volt-
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age drop across the membranes and hence maximum charge accumulation, leading to the highest

equivalent permittivity values. It essentially means that all the membranes fully contribute to the

equivalent permittivity of the doublet, and we expect the permittivity at low frequency to be the

sum of mother and daughter permittivity rather than some form of average as observed at high

frequency.

In terms of the low- and high-frequency pathway scheme outlined in Supplementary Fig. 2,

this means that the total permittivity at low frequency should be approximately the sum of mother

and daughter equivalent permittivity. Permittivities of parallel pathways are additive, and since the

high-frequency pathway represents mainly the mother permittivity, the capacitive part of the low

frequency pathway should reflect mainly the permittivity contributed by the daughter membrane

capacitance.

We therefore need to obtain the membrane contribution to the permittivity of the daughter

cell taken alone. For this, let us apply an imaginary homogeneous electric probe field E over the

daughter, and evaluate the resulting dipole moment P , in order to be able to calculate the equivalent

permittivity according its primary physical meaning: dipole moment per unit volume per applied

field strength. In mathematical terms:

ε∗d =
P

V · E
(12)

At low frequency, most of the voltage drops over the membrane, such that the voltage drop
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∆U over the membrane is given by E · z, z being the distance from the equator plane of the cell.

Considering the membrane to locally behave like a plate capacitor, this leads to a charge density

of dQ
dA = E · z · ε

∗
mem
d

accumulated at the membrane. Due to the inclination of the membrane in the

ellipsoidal geometry used here, the charge density per unit area projected onto the equator plane is

bigger: dQ
dAequator

= E · cbud · ε
∗
mem
d

. For the calculation of the equivalent permittivity, we exclusively

need to take into account the charges accumulating at the outer membrane surface, such that the

dipole moment per unit area becomes: dP
dAequator

= 2z · Ecbud · ε
∗
mem
d

. Since the volume of the cell

arising per unit area of the equator plane is given by dV = 2z · dAequator, we conclude that the

external dipole moment per unit volume is constant and given by dP
dV = E · ε∗mem · cbud

d
. Therefore,

the daughter membrane contribution to the permittivity follows:

ε∗d = ε∗mem ·
cbud

d
(13)

It remains to estimate the series contribution of the neck, as illustrated by the resistive el-

ement in the low-frequency pathway in Figure 2. Again, we make use of the fundamental link

between induced dipole moment and equivalent permittivity to estimate the contribution of the

neck to the permittivity:

ε∗neck =
P

V · E
(14)

We model the neck as a disk joining mother and daughter cell. For the relatively small neck
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sizes typical for yeast cells, to a first approximation, we can consider the capacitance between the

neck disk and an infinitely big counter electrode infinitely far away from the neck to calculate the

charge that will be accumulated at the neck, the space between disk and counter electrode being

filled with cytoplasm. The capacitance of a disk of radius r = s
2

to an infinite electrode is given

by C∗ = ε∗cyto · 8r; since we consider only the daughter, we need to take into account half of this

capacitance, so that we finally have:

C∗
neck = ε∗cyto · 4r (15)

In reality, the counter electrode is neither infinitely big nor infinitely far way, but corresponds

to the membrane surrounding the rest of the daughter cell. Hence, for calculation purposes, the

counter charge can be lumped together at the center of the daughter cell, such that when applying

a probe field of strength E, we get a voltage of U = E · cbud over the neck capacitance C∗
neck and

hence a total charge of Qneck = ε∗cyto · 4r · cbudE. For small neck sizes cbud also approximately

corresponds to the distance between the neck disk and the center of the daughter cell, so the dipole

moment is given by P ≈ Qneckcbud = ε∗cyto · 4r · c2budE. Applying eq 14 and V = 4π
3
cbuda

2
bud, we get

for the neck equivalent permittivity:

ε∗neck = ε∗cyto ·
3

π
· r · cbud

a2
bud

(16)

The permittivity elements ε∗neck and ε∗d in series define the total equivalent permittivity of the
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low-frequency pathway in Figure 2. Permittivities in series add up as would resistors in parallel,

such that we have for the low-frequency pathway:

ε∗lf =
ε∗neck · ε∗d
ε∗neck + ε∗d

(17)

Equivalent Permittivity of Dividing Yeast Cells For the equivalent permittivity of the dividing

yeast, we need to add up the parallel permittivities of the high and low-frequency pathways. We

therefore have:

ε∗p = ε∗lf + ε∗hf (18)

where ε∗lf is given by eq. 17 and ε∗hf by eq. 10. Especially for small neck sizes, ε∗lf shows a

lower relaxation frequency than ε∗hf, giving rise to a double interfacial relaxation across the kHz to

MHz range.

Supplementary Fig. 1 finally compares the single- and double-relaxation solutions to a finite

element estimation of the complex permittivity of a given dividing yeast doublet obtained with the

commercial software COMSOL. It is seen that the single-relaxation formula correctly predicts the

high frequency part, and gives an order of magnitude estimation at low frequencies. Not surpris-

ingly, the match between the double-relaxation formula and finite element simulation is better. The

details of the finite element simulation are to be given below.
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4.3 Finite Element Simulation

We use the commercial software COMSOL for the finite element simulations. Most of the work for

obtaining a simulation consists in drawing and assigning the correct material properties and physi-

cal equations to the different domains and boundaries, according to the manufacturer’s instructions.

There are however two noteworthy exceptions: Firstly, it is difficult to obtain correct meshing in

the presence of the cell membrane, the thickness of which is orders of magnitude smaller than the

typical dimensions of the yeast cells; and secondly, we need a strategy to obtain the equivalent

permittivity from a quantity directly accessible in COMSOL.

We address the first point by not drawing the cell membrane as its own spatial region, but

rather by imposing a particular boundary condition between cytoplasm and extracellular medium.

This boundary condition links cross-membrane current density to the membrane conductivity and

permittivity, according to:

jcross-membrane = [σmem + jω · εmem] · ∆V

d
(19)

In order to obtain the equivalent permittivity of the dividing yeast by finite element simu-

lation in COMSOL we match the impedance observed for the cell as modelled by cytoplasm and

membrane regions, and second, for a particle of identical geometry but homogeneous composition.

Indeed, the complex permittivity that gives rise to the same impedance as the one obtained for the

cell composed of membrane and cytoplasm is by definition the equivalent complex permittivity ε∗p
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Supplementary information 4: Form Factor for the yeast
cells

This supplementary information explains how to obtain the form factors, needed for the

evaluation of the Clausius-Mossotti factors and hence the dielectrophoretic force.

1 Problem Statement

From an electrical point of view, the yeast cells in the culture medium are dielectric inclusions in a

homogeneous dielectric. Such inclusions are polarized under the influence of an external electric

field; the resulting polarization of the inclusions is however not just dependent on the external field,

but actually the result of the interaction between the primary external field and secondary fields

resulting from particle polarization. As a result, the polarization of dielectric inclusions will be in

equilibrium with the total field composed of external and induced field, rather than just the external

field as one might expect naively. This is the basis of the Clausius-Mossotti theory. Indeed, the

Clausius-Mossotti factor, which determines the magnitude and sign of the dielectrophoretic force,

depends explicitly on the form factor nx:

fCM (ω) =
ε∗p (ω)− ε∗m (ω)

ε∗m (ω) +
[
ε∗p (ω)− ε∗m (ω)

]
· nx

(1)

In terms of the physics involved, the form factor, also referred to as Lorentz depolarization

factor, describes the strength of the secondary field relative to what would be observed in an ideal
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plate condenser with an identical electric polarization P and dielectric constant ε. The task in this

supplementary information is to obtain an expression for the form factor nx of single and, most

importantly, dividing yeast cells.

2 Basic Physics

In general, the polarization P gives rise to surface charges, and these surface charges in turn give

rise to the secondary electric field. In an ideal plate condenser, the surface charge is related to the

polarization P by:

Q

A
= P (2)

The magnitude of the secondary electric field, in turn, is given by

Esecondary = − Q

A · ε
= −P

ε
(3)

For dielectric inclusions in general, the magnitude of the secondary field will be less than∣∣P
ε

∣∣, and the form factor nx indicates the relation between the polarization P and the resulting

secondary field:

nx = −
Esecondary · ε

P
(4)
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the minus sign indicating that in general the secondary field vector will be opposed to the

polarization, whereas the form factor is positive.

3 Single Cells

We model single yeast cells by spheres or prolate ellipsoids with rotational symmetry, according

to the their growth stage (see supplementary information 2).

For a dielectric sphere, the internal field is given by Esecondary = − P
3ε

such that the form factor

is given by1 nx = 1
3
. For ellipsoidal inclusions with cylindrical symmetry (that is with half axes

a = b, but generally different c) the form factor is given by1:

nx =
1

1−
(
c
a

)2 − c

a
·
ln

(
c
a
−
√(

c
a

)2 − 1

)
[(

c
a

)2 − 1
] 3

2

(5)

where the electric field vector is along c. We use this expression for the form factor of the

non-dividing yeast cells.

4 Dividing Cells

We model the dividing yeast cells by joined ellipsoids, with a common cylindrical symmetry axis.

This means that both the mother and the daughter cell are represented by a rotationally symmetric

ellipsoid that is cut open by the neck plane. In order to calculate the form factor, we shall first

3
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estimate the strength of the secondary electric field, by calculating the surface charges and then

applying Coulomb’s law.

For an arbitrarily shaped dielectric body with constant polarization P , the surface charge is

given by:

dQ =
−→
P · d

−→
A = PdA · cos γ (6)

where γ is the angle between the polarization vector and the surface element.

We shall now first consider the electric field of an ellipsoid that is cut open. We parameterize

the ellipsoid using the planetary angle, such that x = a cosα and y = c sinα, the rotational

symmetry axis being along y.

For a rotationally symmetric ellipsoid, the surface charge on a ring of constant latitude α can

be estimated from:

dQ = P · 2πa2 sinα cosα · dα (7)

The electric field due to this charge ring, on an arbitrary position y = d along the symmetry

axis is obtained by Coulomb’s law and the realization that only the component along the symmetry

axis subsists, the perpendicular component nulling out due to the cylindrical symmetry, giving rise
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to elementary trigonometric considerations:

dE =
dQ · (d− c sinα)

4πε ·
[
a2 cos2 α + (d− c sinα)2] 3

2

(8)

Plugging in the expression for the surface charge (eq. 7) we obtain:

dE =
P sinα cosα · dα ·

(
d
a
− c

a
sinα

)
2ε ·

[
cos2 α +

(
d
a
− c

a
sinα

)2] 3
2

(9)

For a fully close ellipsoid the field is known to be homogeneous within the ellipsoidSi-

hvola1999, such that we can set d = 0, and the form factor is obtained by:

nx = − ε

P

∫ π
2

−π
2

dE =

∫ π
2

−π
2

sin2 α cosα · dα · c
a

2 · [1+[
(
c
a

)2 − 1
]
sin2 α

] 3
2

=
1

1−
(
c
a

)2 − c

a
·
ln

(
c
a
−
√(

c
a

)2 − 1

)
[(

c
a

)2 − 1
] 3

2

(10)

which is the well-known form factor for rotationally symmetric ellipsoids (eq. 5).

For a cut-open ellipsoid two things change. First, we do no more expect the field to be

constant over the ellipsoid, such that we need to take into account the position d. And second, we

need to adapt the integration boundaries such as to respect the cut.
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We characterize the cut plane by the planetary opening angle α0, such that yCUT = c sinα0.

To obtain the form factor as it would be estimated by considering the field at a position given by

y = d, we need to integrate between α0 and π
2
:

E (α0 , d) =
P

ε

∫ π
2

α0

sinα cosα · dα ·
(
d
a
− c

a
sinα

)
2 ·
[
cos2 α +

(
d
a
− c

a
sinα

)2] 3
2

· dα (11)

We define the solution using an indefinite integral, with an arbitrary integration constant C

f (α , d) = −
∫

sinα cosα · dα ·
(
d
a
− c

a
sinα

)
2 ·
[
cos2 α +

(
d
a
− c

a
sinα

)2] 3
2

· dα

=
1

2 · (c2 − a2)
·

[
a2 · c · z

(c2 − a2)
1
2

− a

w
·
(
c · sinα− d+

cd · (c− d · sinα)

(c2 − a2 − d2)

)]
+ C

(12)

where w is defined as:

w (α , d) =

[
cos2 α +

(
c

a
· sinα− d

a

)2
] 1

2

(13)

and z is defined as:
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z (α , d) = ln

(c2 − a2) sinα− cd

a2

√(
c
a

)2 − 1
+ w (α , d)

 (14)

For the electric field along the axis of the cut-open ellipsoid, we therefore have:

E (α0 , d) =
P

ε
·
[
f (α0 , d)− f

(π
2

, d
)]

(15)

The total secondary electric field for a dividing cell is obtained by adding the field from the

mother and from the daughter. Compared to the mother, the daughter’s cut surface is rotated by

180 degrees; but since relative to the cut surface, this also implies that the polarization vector is

inverted, we finally can add the fields directly according to:

Etot (d) = Emother (α0,mother , d) + Edaughter (α0,daughter , − d− s) (16)

where s = |sinα0,daughter · cdaughter|+|sinα0,mother · cmother| is the separation between the centres

of the mother and daughter ellipsoid, and where Emother and Edaughter need to be calculated with the

appropriate half axes values amother, cmother and adaughter, cdaughter respectively.

The cut angle values α0,mother and α0,daughter can be calculated from the neck radius rn via:

rn = amother · cosα0,mother = adaughter · cosα0,daughter (17)
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taking the solution in the interval [0,−π
2
].

The electric field is not constant over the cell pair, so we take the volume weighted average

as measure of the mean electric field due to the polarization P :

< E >=

∫
A(d) · Etot(d) · dd

Vtot
(18)

nx = −ε· < E >

P

=

∫
A(d) ·

[
fm
(
π
2

, d
)

+ fd
(
π
2

, d
)
− fm (α0,mother , d)− fd (α0,daughter , − d− s)

]
dd

Vtot

(19)

where the subscripted symbols fm and fd indicate the f as defined by eq. 12 should be

evaluated with suitable half axis values corresponding to the mother and daughter geometry.

We carry out this last integration step numerically.

1. Sihvola, A. Electromagnetic mixing formulas and applications (The Institution of Electrical

Engineers, 1999).
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