A Magnetic Resonance (MR) Microscopy System using a Microfluidically Cryo-Cooled Planar Coil

Chiwan Koo, ^{*a*} Richard F. Godley, ^{*b*} Jaewon Park, ^{*b*} Mary P. McDougall, ^{*a,b*} Steven M. Wright^{*a,b*} and Arum Han*^{*a,b*}

^a Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843 USA

^b Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX, 77843 USA

*Email: arum.han@ece.tamu.edu

10 Supplimentary Information

Instead of measuring the temperature gradient along the long axis of the coil, the coil substrate temperature (on the backside of the coil) was measured. In Table S1, the temperatures near the liquid nitrogen inlet and outlet region were initially different. After 10 15 minutes of cryo-cooling, they converged and then reached below

-190°C after 20 minutes. There was no temperature gradient along the coil axis.

|--|

Time (min)	Temperature near the inlet (°C)	Temperature near the outlet (°C)
0	21.9	21.9
5	-111.1	-143
10	-181	-177.7
15	-191	-188
20	-192	-190
25	-191	-193.2
30	-192	-193

20