Electronic Supporting Information

 Microfluidic Operations and Networks Using Knotted YarnsRoozbeh Safavieh, Gina Z. Zhou, Xun Mao, and David Juncker

Calculation of the fluid concentration in the outlets of the serial dilutor

With reference to Fig. 5C, we perform a nodal analysis to calculate the flow rate ratio and concentration C_{4} at outlet 4 (and the complementary concentration C_{7} at outlet 7) as a function of the ratio between the resistance of one branch r and the outlet resistance given by $n r$ with n being a proportionality factor. First we write the equations for the current at node A and B based on the unknown potential P_{A} and P_{B} :

$$
\left\{\begin{array}{l}
\frac{P_{1}-P_{A}}{(n+1) r}+\frac{P_{1}-P_{A}}{n r}+\frac{P_{B}-P_{A}}{r}-\frac{P_{A}}{2 r}=0 \tag{S1}\\
\frac{P_{1}-P_{B}}{n r}+\frac{P_{A}-P_{B}}{r}-\frac{P_{B}}{r}=0
\end{array}\right.
$$

The equations can be simplified rewritten as:

$$
\left\{\begin{array}{l}
P_{A} \frac{3 n^{2}+7 n+2}{2 n^{2}+2 n}-P_{B}=P_{1} \frac{2 n+1}{n^{2}+n} \tag{S3}\\
-P_{A}+P_{B} \frac{2 n+1}{n}=P_{1} \frac{1}{n}
\end{array}\right.
$$

Multiplying equation S 4 by $\frac{n}{2 n+1}$ and combining equations S 3 and S 4 together we obtain:

$$
\left\{\begin{array}{l}
P_{A}=\frac{10 n^{2}+10 \mathrm{n}+2}{4 \mathrm{n}^{3}+15 \mathrm{n}^{2}+11 \mathrm{n}+2} P_{1} \tag{S5}\\
P_{B}=\frac{14 n^{3}+25 n^{2}+13 n+2}{4 n^{3}+15 n^{2}+11 n+2}
\end{array}\right.
$$

To identify the concentration of the liquid at the exit 4 , and 7 , we need to determine the ratio of the flow rates of $k=\frac{Q_{2}}{Q_{1}}$, where $Q_{1}=\frac{P_{A}}{2 r}$, and $Q_{2}=\frac{P_{A}-P_{B}}{r}$.

$$
\begin{equation*}
\boldsymbol{k}=\frac{Q_{2}}{Q_{1}}=\frac{3 n^{2}+n}{5 n^{2}+5 n+1} \tag{S7}
\end{equation*}
$$

Having the flow ratios, the concentration of fluid 2 in exit $4, C_{4}$, can be approximated using a weighted average of the concentrations of each branch,

$$
\begin{equation*}
\boldsymbol{C}_{4}=\frac{C_{1} Q_{1}+C_{2} Q_{2}}{Q_{1}+Q_{2}} \tag{S8}
\end{equation*}
$$

where $C_{1}=0$ and $C_{2}=0.5$
Substituting the concentrations of the liquids and the flow rates in to the eq. S8 we have

$$
\begin{equation*}
C_{4}=\frac{0.5}{\mathrm{k}+1} \tag{S9}
\end{equation*}
$$

and similarly the concentration of fluid at exit 7 is given by the ratios of the mirror flow rates Q_{I}, and $Q_{2}{ }^{\prime}$, and the concentrations $C_{1}{ }^{\prime}$ and $C_{2}{ }^{\prime}$. Using the fact that $C_{4}+C_{7}=1$ we find:

$$
\begin{equation*}
\boldsymbol{C}_{7}=\frac{C_{1^{\prime}} Q_{1^{\prime}}+C_{2^{\prime}} Q_{2^{\prime}}}{Q_{1^{\prime}}+Q_{2^{\prime}}}=\frac{\mathrm{k}+0.5}{\mathrm{k}+1} \tag{S10}
\end{equation*}
$$

Fig. S4 shows how the concentrations of the liquid in exits 4 and 7 vary with respect to n.

