Electronic Supporting Information

Microfluidic Operations and Networks Using Knotted Yarns

Roozbeh Safavieh, Gina Z. Zhou, Xun Mao, and David Juncker

Calculation of the fluid concentration in the outlets of the serial dilutor

With reference to Fig. 5C, we perform a nodal analysis to calculate the flow rate ratio and concentration C_4 at outlet 4 (and the complementary concentration C_7 at outlet 7) as a function of the ratio between the resistance of one branch *r* and the outlet resistance given by *nr* with *n* being a proportionality factor. First we write the equations for the current at node *A* and *B* based on the unknown potential P_A and P_B :

$$\left(\frac{\frac{P_1 - P_A}{(n+1)r} + \frac{P_1 - P_A}{nr} + \frac{P_B - P_A}{r} - \frac{P_A}{2r} = 0\right)$$
(S1)

$$\begin{cases} \frac{P_1 - P_B}{nr} + \frac{P_A - P_B}{r} - \frac{P_B}{r} = 0 \end{cases}$$
(S2)

The equations can be simplified rewritten as:

$$P_A \frac{3n^2 + 7n + 2}{2n^2 + 2n} - P_B = P_1 \frac{2n + 1}{n^2 + n}$$
(S3)

$$-P_A + P_B \frac{2n+1}{n} = P_1 \frac{1}{n}$$
(S4)

Multiplying equation S4 by $\frac{n}{2n+1}$ and combining equations S3 and S4 together we obtain:

$$\left(P_A = \frac{10n^2 + 10n + 2}{4n^3 + 15n^2 + 11n + 2}P_1\right)$$
(S5)

$$\begin{cases} P_B = \frac{14n^3 + 25n^2 + 13n + 2}{4n^3 + 15n^2 + 11n + 2} \end{cases}$$
(S6)

To identify the concentration of the liquid at the exit 4, and 7, we need to determine the ratio of the flow rates of $k = \frac{Q_2}{Q_1}$, where $Q_1 = \frac{P_A}{2r}$, and $Q_2 = \frac{P_A - P_B}{r}$.

$$\boldsymbol{k} = \frac{Q_2}{Q_1} = \frac{3n^2 + n}{5n^2 + 5n + 1} \tag{S7}$$

Having the flow ratios, the concentration of fluid 2 in exit 4, C_4 , can be approximated using a weighted average of the concentrations of each branch,

$$\boldsymbol{C_4} = \frac{C_1 Q_1 + C_2 Q_2}{Q_1 + Q_2} \tag{S8}$$

where $C_1 = 0.$ and $C_2 = 0.5$

Substituting the concentrations of the liquids and the flow rates in to the eq. S8 we have

$$\boldsymbol{C_4} = \frac{0.5}{k+1} \tag{S9}$$

and similarly the concentration of fluid at exit 7 is given by the ratios of the mirror flow rates Q_1 ' and Q_2 ', and the concentrations C_1 ' and C_2 '. Using the fact that $C_4 + C_7 = I$ we find:

$$\boldsymbol{C}_{7} = \frac{C_{1'}Q_{1'} + C_{2'}Q_{2'}}{Q_{1'} + Q_{2'}} = \frac{k + 0.5}{k + 1}$$
(S10)

Fig. S4 shows how the concentrations of the liquid in exits 4 and 7 vary with respect to *n*.