Bubbles Navigating through Networks of Microchannels

(Supplementary Information)

Wonjae Choi, Michinao Hashimoto, Audrey K. Ellerbee, Xin Chen, Kyle J. M. Bishop, Piotr Garstecki[†], Howard A. Stone[‡], and George M. Whitesides^{*}

Department of Chemistry and Chemical Biology, Harvard University,

12 Oxford Street, Cambridge, MA 02138

[†] Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224

Warszawa, Poland

[‡] Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544

*Corresponding Author

Email Address: gwhitesides@gmwgroup.harvard.edu

Table S1. Occupancy of channels by bubbles and the selection of the path at the first intersection of the network shown in Figs. 2, 4, 5.

Occupancy of channel						The path an incoming bubble selects
	(# of bubbles)					
	А	В	С	D	Е	
(1)	0	0	1	1	1	Right (A)
(2)	0	0	1	0	1	Right (A)
(3)	0	0	2	1	0	Right (A)
(4)	1	0	1	0	2	Right (A)
(5)	0	0	1	1	0	Left (B CD E)
(6)	1	0	0	1	1	Left (B CD E)
(7)	1	0	1	0	1	Left (B CD E)
(8)	1	0	1	1	0	Left (B CD E)
(9)	1	0	1	0	0	Left (B CD E)
(10)	1	0	2	0	1	Left (B CD E)
(11)	2	0	1	0	0	Left (B CD E)

Note: The data set (3) and (5) determined the lower and upper bound of the resistance of a bubble, respectively.

Figure S1. The flow field of a single-phase Newtonian fluid in a point-symmetric two-path network. The Reynolds number is set to be zero so that the flow is Stokesian whose flow field can be calculated by solving Equations 1 and 2. The viscosity and density of the hypothetical fluid are set to 1 (kg m s⁻¹) and zero, and the pressures at the inlet (top) and outlet (bottom) are 1 (Pa) and zero. Obviously the flow field is point-symmetric as well, making the volumetric flows across the A-A' and B-B' cross-sectional areas to be identical.

Figure S2. a) The path-selection of a single bubble in a network shown in Figure 3 in the manuscript. **b)** The path-selection of a group of bubbles; bubbles populate more and more channels as the number density increases. The scale bar represents 1 mm.