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1. THEORETICAL DESCRIPTION OF THE
SALT DYNAMICS AND RANGE OF

OPERATION

1.1. Advection-diffusion equation for the salt

In order to predict the variations of the channel ionic
resistance with time, we follow the framework proposed
by Taylor and Aris1–3 to analyze our results. We consider
here a channel of radius R, length L, and the diffusion
coefficient of the salt in the solution is D. Solving the
Navier-Stokes equation for a cylindrical channel, under
the assumption of no-slip boundary condition, the veloc-
ity profile reads:

v(r) =
∆P
4ηL

(R2 − r2) (1)

and the average velocity is accordingly:

V̄ =
1

πR2

∫ R

0

2πrv(r)dr =
∆PR2

8ηL
. (2)

At t = 0, a concentration profile c(r, t, z) is released in
the flow. It reads c(z ≤ 0, t = 0) = c1 and c(z > 0, t =
0) = c2.
The concentration profile is governed by the advection-
diffusion equation which in cylindrical coordinates takes
the form:

∂c

∂t
+ v(r)

∂c

∂z
= D(

∂2c

∂z2
+

1
r

∂

∂r
(r
∂c

∂r
)) (3)

This equation is complemented by the no-flux boundary
condition at the channel’s surface, ∂c

∂r = 0 for r = R.
Following Taylor-Aris framework1,2, we perform a cross-
sectional average over the radial variables. If we consider
that the diffusion is fast in the r direction (t � R2/D),
so that the concentration is homogeneous in the chan-
nel cross-section, then the averaged advection-diffusion

FIG. 1: Sketch of the salt front moving under (a) a pressure
driven flow; (b) electro-osmotic flow.

reads:

∂c̄

∂t
+ V̄

∂c̄

∂z
= D(1 +

R2V̄ 2

48D2
)
∂2c̄

∂z2
(4)

An effective diffusion coefficient Deff = D(1 + 1
48Pe

2) is
introduced, with Pe = R V̄

D a Peclet number written in
terms of the channel lateral size. Note that for a flat
slit channel, the Peclet number is defined in terms of
the smallest size h and the numerical prefactor 1/48 is
changed to 1/2101–3.

Accordingly, the concentration profile only depends on
the variable x = (z − V̄ t)/

√
t: c = f(x = z−V̄ t√

t
). In

this variable, the diffusion-advection equation reduces to
− 1

2xf
′(x) = Defff

′′(x), with solution - for our initial con-
ditions -:

c(z, t) =
c1 − c2

2
Erf(

z − V̄ t√
4Defft

) +
c1 + c2

2
(5)

with Erf(x) = 2/
√
π
∫ x

0
du exp[−u2].

From this expression, one may extract the electric re-
sistance of the channel. The latter is related to the local
conductivity of the salt solution κel = (λ+ + λ−) c, λ±
being the conductivity of the charged species and c the
local salt (KCl) concentration.
One may consider that the total electric resistance of the
channel, Re, is the sum of the resistance over its cross-
sections, leading to:

Re(t) =
∫ L

0

1
(λ+ + λ−)c(z, t)

1
πR2

dz (6)

This equation can be integrated numerically. However, if
we consider that diffusion in the L direction is negligible
(i.e. t � L2/Deff), the channel is partly filled with c1
and c2, and their resistance can added so that:

Re(t) = Re,1
V̄ t

L
+Re,2

L− V̄ t
L

(7)

with Re,1−2 being the electrical resistance of the channel
filled with salt concentration c1−2. This result can be de-
rived from the full expression, Eq.(6), as the first term of
an expansion in terms of the salt concentration difference
between the two sides of the channel. Altogether, using
Eq.(6), the time τ required for the electric resistance to
vary from one value to the other is given by τ = L/V̄ .
As shown in the main text, this result was found to be
in quantitative agreement with the experimental results.
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1.2. Convective limit

While the above description assumes a rapid diffusion
of the salt across the channel width, it is instructive to
explore the opposite regime, in which salt diffusion is put
to zero (D = 0). In this case, the salt is convected in its
original layer. In a cylindrical channel, the advection
velocity is given by the Poiseuille expression in Eq.(1).
Assuming that the different fluid layers at various dis-
tance to the center r behave as resistors in parallel, one
may expect the global electric resistance of the channel
to behave as

1
Re(t)

=
1

πR2

∫ R

0

2πrdr × 1
Re(r, t)

(8)

with Re(r, t) = Re,1
v(r)t
L +Re,2

L−v(r)t
L the resistance as-

sociated with the local velocity field v(r). Developping
for a small ∆Re = Re,1 −Re,2 (corresponding to a small
salt concentration difference), one gets

1
Re(t)

=
1

Re,2
×
(

1− ∆Re
Re,2

× V̄ t

L

)
(9)

where V̄ is the averaged velocity defined in terms of the
flow rate as V̄ = 1

πR2

∫ R
0

2πrdrv(r).
This shows that in this convective limit also, the tran-

sition time needed for the global resistance to reach its
final plateau value is again given by τ = L/V̄ , with V̄
the average velocity in the channel, defined in terms of
the flow rate.

1.3. Range of operation: critical flow rates and
channel aspect ratio.

In this section, we review the assumptions underlying
the above analysis, in order to infer the range of operation
of the method.

Globally, two main hypothesis have been used. First,
in the Taylor-Aris approach, a fast transverse diffusion
assumption is made, so that the time of the experiment
(i.e. τ ∼ L/V̄ ) should be large compared to the diffusion
time in the cross section, i.e. τ � R2/D. Defining as
above the Peclet number as Pe = V̄ R

D and the width to
length aspect ratio of the channel q = R/L, this condition
reads :

q × Pe� 1 (10)

We note however that, as discussed above, the main re-
sult for the cross-over time to reach the plateau, τ = L/V̄
is also recovered in the opposite convective limit (with
D = 0, Pe = ∞), so that this condition is not expected
not to be essential for the flux monitoring method to op-
erate. Going beyond the above simple estimates to ana-
lyze this time-scale separation condition would require to
tackle the problem in its full hydrodynamic and electric
complexity.
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FIG. 2: Range of operation of the flux monitoring method
in terms of the Peclet number Pe = RV̄ /L and width-to-
lengh aspect ration q = R/L (R being replaced by the largest
width for a shallow microchannel). Lines represent the various
conditions for time separation as discussed in the text. The
grey zone represents the accessible aspect ratio q versus Pe
in which the proposed approach is expected to be valid.

Note furthermore that in a shallow channel geometry,
say with a height h and width w (> h), the relevant
diffusion time scale was shown by Ajdari et al.3 to be
the one associated with the largest lengthscale w, i.e.
w2/D, so that the above condition is more stringent in
this geometry, with the radius R replaced by the width
w in the above condition in Eq.(10).

A second hypothesis is made implicitly by neglecting
diffusion over the length L of the channel, i.e. τ �
L2/Deff), with Deff the Taylor-Aris expression for the
effective diffusion coefficient. This leads to

Pe

1 + αPe2
� q (11)

with α = 1/48 or α = 1/210 for channel with cylindrical
and slit shape respectively.

Altogether these various criterions define a range of
operation for the above results - and the ’flux monitoring’
technique - to hold. This domain is sketched in Fig. 2,
where we report the accessible width to length aspect
ratio as a function of the Peclet number. Note that for
Pe > 1, this second condition in Eq. (11) is actually
redundant with the first one in Eq. (10).

The range of operation is very much dependent on
the channel width to length aspect ratio. For small
width to length ratio, which is quite common for most
microfluidics set-ups, both conditions are fulffilled for a
very large range of Pe numbers, making the proposed
approach a method of choice to estimate the flow rate
and hydrodynamic resistance of the channel. For the
1µm channel considered in the above experiments, the
width to length aspect ratio of order 1.5 × 10−5 ensures
the validity of the analysis.

We finally quote that in the above description, the ex-
ternal voltage is applied to probe the electric resistance
of the channel, while the driving is obtained by the pres-
sure drop. This requires that the EOF induced by the
corresponding electric field should be negligeable as com-
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pared to the flow rate induced by pressure. Using the
Smoluchowski expression for the electro-osmotic velocity,
vEO = εζ∆V/(ηL)4, this condition takes the following
form:

δ =
8εζ
R2

∆V
∆P

� 1 (12)

with δ the ratio between the electroosmotic velocity and
flow-rate induced velocity. This condition is filled in most
practical situations, as can be verified using typical val-
ues. Along the same lines, the streaming currents contri-
bution to the electric current, i.e. ionic current induced
in the Debye layer by the pressure driven flow, can be
also neglected.

2. CHANNELS WITH ARBITRARY SHAPE

The previous description can be used as a simple and
versatile diagnostic method to probe the shape of a chan-
nel. The general idea is that the time dependent electric
resistance is a direct function of the cross-section area
A(z) of the channel along its length z. The time depen-
dance of the electric resistance as the salt front travels
along the channel is therefore a direct signature of the
shape variations.

We rationalize more formally this idea by extending
the Taylor-Aris description. Let us consider a channel
whose cross section A(z) varies along its length z. For a
slowly varying A(z), the Taylor-Aris approach leads to a
global cross-over time τ now writing:

τ =
∫ L

0

dz

V̄ (z)
=
Vtot

Q
(13)

where we used mass conservation Q = A(z)× V̄ (z) =cst;
Vtot =

∫ L
0
dzA(z) is the total volume of the channel.

This expression can be rewritten in terms of the hydro-
dynamic resistance of the channel Rhyd, defined as

Rhyd =
∫ L

0

dz

A(z)Khyd(z)
(14)

with Khyd(z) the local hydrodynamic permeability, de-
fined as above as V̄ (z) = Khyd(z)(−∇P )(z). We have
accordingly

τ =
VtotRhyd

|∆P |
(15)

Now, while these quantities concern the global properties
of the channel over its entire length, much insight can
be obtained by monitoring the time-dependence of the

measured electric resistance Re(t). In a quasi-stationary
regime, the change in electric resistance over a time in-
terval dt is obtained by replacing the ion concentration
c2 by c1 in a volume of length V̄ (zt)× dt = Q/A(zt)× dt
and cross section A(zt), so that one gets

dRe
dt

=
1
λ̄

∆
(

1
c

)
× Q

A(zt)2
(16)

with ∆ (1/c) = 1/c2 − 1/c1 and λ̄ = λ+ + λ−. Here
zt = z(t) is the position of the salt front at a time t: it
is defined implicitly by the differential equation

dt =
dz

V̄ (z)
=

1
Q
A(z)dz (17)

This shows that variations in the channel cross section
A(z) lead to changes in the local slope of the time-
dependent resistance: a curvature in the electric signal
for Re(t) is expected to reflect a varying cross-section
in the channel. We quote however that this simple de-
scription implicitly assumes that the salt concentration
is homogeneous over the section of the channel, so that
these results do not take into account the transient dy-
namics associated with this process. This condition im-
poses that the diffusion time over the change in lat-
eral cross section ∆A, typically τlat ∼ ∆A/D should
be smaller than the convective time along the channel
∆z/V̄ (z).This imposes that a variational Peclet number
defined as P̃ e = (dA/dz)V̄ (z)/D should be muchsmaller
than unity. This suggests that the method is not suited
to probe strong variations in the cross section. Finally,
we remark that in principle the analysis proposed may be
pushed further to reconstruct the full z-dependent cross
section of the channel. Indeed, according to the previ-
ous analysis, the measurement allows to formally access
both the time-depence of the cross-area A(t), as well as
the velocity at which the channel is explored, z(t):

A(t) =
γ√
dRe

dt

z(t) =
Q

γ

∫ t

0

dt′ ×
√
dRe
dt

(t′) (18)

with γ a numerical prefactor defined as γ =√
Q× λ̄−1∆(1/c). This shows that a parametric plot al-

lows to reconstruct the profile shape A(z) versus z along
the channel. To be quantitative, the reconstruction re-
quires to know the flow rate Q, and here the problem
is somewhat reversed with respect to the previous con-
siderations, as the knowledge of Q allows to extract the
information on the profile A(z).
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