Supplementary Material (ESI) for Lab on a Chip This journal is © The Royal Society of Chemistry 2011

## Simple and Cheap Microfluidic Devices for Preparation of Monodisperse Emulsions

## **Supplementary material**

Nan-Nan Deng, Zhi-Jun Meng, Rui Xie $\sp{*}$ , Xiao-Jie Ju, Chuan-Lin Mou, Wei Wang and Liang-Ying Chu $\sp{*}$ 

School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China. *E-mail: chuly@scu.edu.cn (L.-Y. Chu); xierui@scu.edu.cn (R. Xie)* 

Part I. Supplementary Movies S1-S4.

Part II. Supplementary Figures S1-S4.



## Part I. Supplementary Movies S1-S4:

**Movie S1.** The process for fabricating the simple microfluidic device, Firstly, a square of the same size as coverslip is drawn on paper and a red line is drawn as the cutting position; then, coverslips are overlaid on the designed geometry and cut along the red line; lastly, sandpapers (2000CCR/R, Sharpness) are used to burnish the edges of cut coverslips to make sure the sizes and shapes of cut coverslips are the same by using a microscope with scales.



**Movie S2.** Preparation processes of monodisperse W/O emulsions in a simple cross-junction device. All the inner aqueous phase flow rates ( $Q_I$ ) are 500 µL/h, and the outer oil phase flow rates ( $Q_O$ ) are 500 (a), 1000 (b), 1500 (c), 2000 (d), 2500 (e) and 3000 µL/h (f), respectively. The scale bar is 200 µm.



**Movie S3.** Preparation processes of monodisperse W/O/W emulsions in a simple double cross-junction device. The inner ( $Q_I$ ) and middle ( $Q_M$ ) phase flow rates are 300 and 500  $\mu$ L/h respectively, and the outer phase flow rates ( $Q_O$ ) are 12000 (b1), 5000 (b2), 2500 (b3), 1500 (b4), 1000 (b5) and 800  $\mu$ L/h (b6) respectively. The scale bar is 400  $\mu$ m.



**Movie S4.** Preparation processes of monodisperse O/W/O emulsions encapsulating two oil droplets containing different contents in a simple double cross-junction device. (a) In first junction, all of the three phase flow rates are 120  $\mu$ L/h; (b) in second junction, the outer oil phase flow rate is 20  $\mu$ L/h. The scale bar is 200  $\mu$ m.





**Fig. S1.** Photomicrographs of channels of ten cross-junction microfluidic devices, in which the widths of a, b, c and d are all designed as 100, 150, 150 and 200  $\mu$ m. The scale bar is 200  $\mu$ m.



**Fig. S2.** Reproducibility of microfluidic devices prepared with the proposed method, in which the widths and offsets of 10 devices are presented with the same geometry.



**Fig. S3.** (a) The photograph of connection of pressure testing device, in which the single T-junction device is intact without any fluid leakage as the driving pressure increases from 0.2 (b), 0.4 (c), 0.6 (d) to 0.8 MPa (e).



**Fig. S4.** Schematics of spatially patterning wettability of double flow-focus channels by using flow confinement method. A = DI water, B = 10 vol.% CTMS, C = air or SO, and D = 10 vol.% HF or 2 mol/L NaOH. (a) Injecting the inlets of first flow-focus junction with DI water and the outlet with 10 vol.% CTMS to modify the second junction to be hydrophobic. (b) Modifying the first flow-focus junction to be hydrophobic. (b1) Modifying the entire internal channel surface hydrophobic with 10 vol.% CTMS, (b2) injecting the inlets of first flow-focus junction with air or SO and the inlet of second flow-focus junction with 10 vol.% HF or 2 mol/L NaOH to make second junction back to hydrophilic, (b3) distribution of modified channel surface wettability.